
BUILD VS. BUY
WHY GOING IT ALONE DOESN’T ALWAYS
WORK IN SOFTWARE DEVELOPMENT

2

BUILD VS. BUY

WHY GOING IT ALONE DOESN’T ALWAYS
WORK IN SOFTWARE DEVELOPMENT
Developers love to develop, and software companies
love to build quality software. It’s what they do best – or
is it? It’s possible that some companies can overreach
with their abilities and assets, tying up valuable company
resources with doomed software experiments. Mas-
sively delayed deadlines, exploding budgets, and sub-par
results are not unheard of – we see it on the news all the
time, sometimes with devastating consequences.

In this paper, we discuss the risks of do-it-yourself soft-
ware development and make a case for why off-the-shelf
or OEM (Original Equipment Manufacturing) may be a
better choice for a company’s resources, budgets, tech-
nology needs, and sanity.

IF YOU BUILD IT

Even the smallest software projects can look decep-
tively simple to the untrained eye. The most basic of
projects still require a knowledgeable team to execute
it, hundreds of decisions both big and small, and count-
less hours spent planning, developing and testing. Any
development undertaking will also require a financial
investment – companies need to ensure that valuable
resources and tightly controlled budgets are correctly al-
located. This isn’t to say that no software projects should
be built in-house, but decision makers must weigh the
pros and cons carefully in order to make prudent busi-
ness decisions designed to help the company compete
and thrive.

The software development landscape is littered with sto-

ries of DIY setbacks. Even the biggest brands with plenty
of in-house expertise and big budgets are susceptible
to in-house development problems that can damage a
reputation, negatively impact customer loyalty, and most
devastating, cost countless dollars. In fact, in a study
Gene Kim and Mike Orzen, co-authors of “When IT Fails,”
conservatively pegged the costs of IT failures, just for S&P
500 companies alone, to be over $100 billion1 annually.

Here are some notable examples:

HEALTHCARE.GOV WEBSITE COST $834
MILLION

Healthcare.gov may have set the high water mark for the
most public IT disaster. The Affordable Care Act (ACA)
is President Obama’s signature legislative achievement
with Healthcare.gov as the driving force to bring it to the
public. It’s a healthcare marketplace where users can pick
and choose between insurance options - but in reality, it
is just a simple e-commerce site. It presents users with
their options, determine payments and subsidies, collect
payments, and submit information to the appropriate
health insurance provider. However, despite such a
simple premise, problems began surfacing on day one.

From the first minute, the system was overwhelmed with
the sheer volume of users. It was later revealed that test-
ing done with only a few hundred concurrent users led
to a system crash, the week before launch. There were
performance issues, errors, and random bugs that pre-
vented users from completing transactions. On the first

3

day, six people were able to sign up.2 There were issues
with the project from its inception: a flawed bid process,
archaic technology choices, and countless last-minute
changes which threw off the development and testing
schedules. But the most critical error was made in decid-
ing on who would be the systems integrator, a critical
role in such a massive project. The government decided
it would be best suited to that role:

“A former employee of CGI Federal — the private-sector
contractor hired to build healthcare.gov — said the govern-
ment’s insistence on being the systems integrator resulted in
disastrous consequences for the website.”3

In general, the core competency for government agen-
cies is not systems integration or IT and they usually go
to external contractors for that reason, but the govern-
ment wanted control and oversight. Without the deep
knowledge and experience required to manage such
a large and complex project, it went off the rails pretty
quickly. No one had a clear vision of how the different
parts were supposed to work together, changes were al-
lowed up until the last minute, and the testing phase was
an afterthought.

Due to its high profile nature and its role in the ACA
legislation, the website had to go on. It took almost two
months for the rescue operations to get the site working
and enable users to start signing up. Today the website
is functional but the costs were enormous: $834 million4
plus the job of Health and Human Services Secretary for
Kathleen Sebelius.

NHS Scraps £11 Billion Integrated Health Care
Records System

The NHS’s (National Health Service) National Programme
for IT, in the United Kingdom, was said to be the larg-

est civil IT project in history, servicing more than 40,000
doctors and over 300 hospitals5. The system was meant
to create a centralized electronic health record system,
replacing the myriad of systems already in use across the
NHS.

The project, with an initial budget of £6.2 billion, missed
its first set of deadlines in 2007 and was constantly be-
sieged by delays, contractor walkouts, technical challeng-
es, continuously shifting requirements, and little buyin
from users. Four years after missing its initial targets, the
UK government announced that they were scrapping the
entire project; with final costs double that of the original
budget. The Major Projects Authority, set up to review
value for money in regards to governmental projects,
served the death knell for the project:

“There can be no confidence that the programme has deliv-
ered or can be delivered as originally conceived. The project
has not delivered in line with the original intent as targets
on dates, functionality, usage and levels of benefit have
been delayed and reduced.”6

This project is a prime example of when a business
or government ventures into an area where it has no
expertise. Government bureaucrats were in charge of a
decade long IT project, said to be one of the largest and
most complex in history. Its failure was no surprise.

Following the project’s cancellation, the government
announced that local doctors and hospitals would be
allowed to build or buy whichever IT system best suited
their needs.

FBI Ditches Custom Software at a Cost of $600
Million

One of the most highly publicized software development
project failures belongs to the Federal Bureau of Inves-

BUILD VS. BUY

4

tigation (FBI). Before 2000, many of the agency’s records
were paper-based, preventing collaboration and efficient
computer-based analysis. This was one of the major
shortcomings that were made public by the events

of 9/11. Prior to those events, the FBI had rolled out
plans to develop a virtual case file system that would
merge obsolete applications into a single, up-to-date sys-
tem. This would allow agents to more easily and quickly
analyze and share information, helping them further
their investigations. However the very public and harsh
criticism of the bureau’s IT shortcomings following the at-
tacks of 9/11, forced accelerated development timelines
for the FBI’s new, custom-built system.

When the project was finally delivered, significantly over
its $170 million budget and behind schedule, the case
management software was considered unusable and
shelved. The project’s failure was attributed to multiple
factors: poor system architecture, lack of IT project man-
agement expertise, unclear and shifting requirements,
and time-pressured project schedules. Another critical
mistake was trying to build each component from scratch
as noted in the Washington Post:

“Along the way, the FBI made a fateful choice: It wanted
SAIC [the contractor] to build the new software system from
scratch rather than modifying commercially available, off-
the-shelf software.” 7

A month after the project was shelved, the FBI an-
nounced it would be building a new system based on
mostly offthe-shelf software rather than re-attempt a
custom job.

IT REALLY IS THAT HARD

These high-profile projects demonstrate that flawless

custom software is difficult to achieve, even for large,
wellfunded organizations. A CHAOS Summary from the
Standish Group reported that in 2015, 71% of software
projects did not meet their development goals,– 52% fell
short on features, went over budget and were delivered
late, and an additional 19% either weren’t delivered at all
or were never used.8 According to Standish Group, these
figures are on the rise and demonstrate just how difficult
it is to deliver top-quality software.

HIGH RISK, LITTLE REWARD

As indicated in the examples above, a variety of complica-
tions can occur when teams set out to build complicated
software solutions, in-house. Most are optimistic about
what they can accomplish and plans are often ambitious,
pushing development teams beyond their core compe-
tencies — what they’re actually really good at. Here are
some things to consider and determine whether your
project is high risk with little reward:

In-house expertise

Does your organization have the necessary skills and
expertise to produce to the level of quality needed?
If the answer is no, it can result in a subpar product
that lacks the required features and functionality.
Outside experts can be brought in but this will heavily
impact project costing and delivery timelines.

Budget constraints

Many, if not most, companies do not accurately
ascertain the level of financial commitment required
to complete a high quality software project. There
can be nasty surprises that pop up along the way and
result in projects costing much more than originally
anticipated. In worst-case scenarios, budgets that

BUILD VS. BUY

5

have gotten so far off-track that the companies can-
not financially recover. Also, budgets and resource
allocation should, but rarely do, take ongoing mainte-
nance and support into account.

Time constraints

In general, software projects are started because
there is an urgent business need. Taking the time
needed to plan, build, and test it may not be possible
given tight deadlines.. It may sound great to have a
custom tailored solution, but organizations risk giving
up their competitive advantage as they lose critical
time waiting for the custom solution to be imple-
mented. In today’s market it’s not necessarily the
most featurepacked solution that wins, but the one
that gets there first and simply gets the job done with
the least barriers to adoption.

Off-the-shelf solutions

If there are off-the-shelf solutions available, with all
the necessary features, there really is no reason to
take on the headache of building. A pre-built solution
will have been tested over time, by multiple users,
and have the necessary support available to address
a company’s needs and issues. Also, an off-the-shelf
solution means that organizations can get back to
doing what they do best – faster.

Competitive advantage

Companies should only venture to build software
that is a distinct competitive advantage for them
and a core competency. If neither of these factors
is true, then they should not spend valuable time
and resources on it. It will only result in a less than
optimal solution that will not best serve the business.

Opportunity cost is real and companies should focus
on what they do best.

When enterprises don’t have the know-how, budgets, or
time to build it themselves, it might be time to turn to
OEM software solutions. The next section covers dy-
namic programming languages (sometimes referred to
as scripting languages). Their usage is widespread (and
growing) in enterprise and government software projects,
due to their efficiency, ease-of-use, and how they can ac-
celerate the development process.

DYNAMIC PROGRAMMING LANGUAGES:
BUILD OR PRE-BUILT

Millions of developers use dynamic languages to solve
problems with building and integrating heterogeneous
systems. Whether it’s manipulating data, working with
devices, or prototyping, dynamic languages (such as Perl,
Python, and Tcl) are popular because they save develop-
ment time, improve the user experience, and provide
users with flexible scripting options.

Developers often custom assemble dynamic languages
because they assume they’re easy to install, test, and
maintain. However, they tend to underestimate the work
involved in integrating and maintaining dynamic language
distributions because they are so ubiquitous. More than
97% of Fortune 1000 companies use dynamic languages
to power various applications and accomplish daily IT
tasks.

Perl scripts are commonly used to run complex compu-
tational and integration tasks. Python’s support for basic
Internet protocols makes it a natural fit for web applica-
tions. It is also becoming increasingly popular for heavy
datacentric scientific computing and financial modeling

BUILD VS. BUY

6

applications. Tcl is ideal for rapid prototyping, GUIs, au-
tomated testing, and is widely used in Electronic Design
Applications (EDA), Field-Programmable Gate Arrays
(FPGA), circuits, and semiconductors.. Dynamic program-
ming languages – Perl, Python and Tcl in particular – are
efficient, easy-touse, quick to learn, and can be used for a
wide variety of different software tasks.

Another big reason that developers tend to deploy Perl,
Python, and Tcl themselves is because they are open
source. They are widely available, with no licensing fees,
and no need for purchase orders. Developers can simply
download the code and get started. However, there are
big drawbacks to using open source versions of these
dynamic languages:

Technical Support

Open source versions of Perl, Python, and Tcl don’t
require software licenses but that also means that
there are no service level agreements for support
either. Whenever there are issues, there is no one
contractually obligated to assist a company. Instead
users have to rely on developer communities who
may or may not answer questions on web forums,
mailing lists, and ad hoc support databases. Even
worse, users may end up with a half dozen conflicting
responses when they do. No access to reliable tech
support can be a major setback when a team lacks in-
house dynamic language expertise and is still trying
to meet release dates and produce quality software.

Maintenance and Upkeep

Installing and maintaining an open source dynamic
language is an ongoing task. Developers must con-
tinually maintain and update open source code to
ensure that bug fixes and feature upgrades are up-

to-date. These kinds of tasks are not top of mind for
most developers and can easily fall to the bottom of
a busy developers’ task list, exposing their installation
to security risks and can lead to product degradation
over time.

Licensing

Open source software is almost all covered by one
or more licenses that must be adhered to. Some
are fairly permissive, some much less so, and may
require any changes to the software to be published
if the modified version is distributed. Furthermore,
specific modules within an open source distribu-
tion may have their own license terms, which can
be considerably stronger than the basic language
license. The time and effort spent managing licenses
can easily grow exponentially, and the cost of even
an inadvertent license violation can be considerable,
as it may involve intellectual property lawsuits, loss
of reputation, and even the inability to legally distrib-
ute your product until the problematic open source
component is removed.

These shortcomings make open source distributions of
dynamic languages an ideal off-the-shelf option for de-
velopment teams that want to get the most out of Perl,
Python, and Tcl without shouldering the responsibility of
ongoing installation, maintenance, and licensing.

BUILT BY ACTIVESTATE: ACTIVEPERL,
ACTIVEPYTHON, AND ACTIVETCL

At ActiveState, dynamic languages are a core competen-
cy, and have been since the late ‘90s. These language

distributions are considered the industry standard and
are used by millions of developers around the world.

BUILD VS. BUY

7

They come pre-compiled for out-of-the-box installation
and include core binaries, popular modules, and com-
plete documentation. Whether they are being used for
business- or mission-critical applications or open source
projects, ActiveState distributions save development
time, help get products to market faster, and improve
the user experience, both for development teams and
customers. Here’s how:

“Our story at Numara is that FootPrints makes it
significantly faster, easier and more cost effective to
run a support environment than it would be to build
your own solution in-house. I thought we should
practice what we preach and let ActiveState do the
same for us.”

-MICHAEL KRIEGER, NUMARA SOFTWARE

Faster Software Development

Dynamic languages often enable key functionality and
must be considered early in the development cycle.
ActiveState language distributions are pre-compiled, ag-
gressively tested, and work across numerous platforms.
They provide a solid foundation so that developers can
immediately begin coding with confidence, knowing that
a project cornerstone is in place. By choosing an enter-
prise-grade language distribution rather than assembling
one in-house, companies will save time on installing
scripts, running test cycles, and troubleshooting cross-
platform issues throughout the development lifecycle.

ActiveState OEM customers get direct access to the
world’s best Perl, Python, and Tcl engineers. Devel-
opment issues are resolved privately, not in a public
forum and enterprises will get unlimited incidents,
troubleshooting, emergency in-production coverage,
and guaranteed fast response times and fixes. When
organizations are under pressure to meet deadlines and

get products to market, priority access to ActiveState’s
experts will keep a project on track.

“Not only is it reliable, scalable and enterprise-ready,
ActivePerl saves CA development time and dollars.”

- LAWRENCE BACKMAN, VICE PRESIDENT, CA

Better Quality Software

Enterprises reduce the risk of project failure if each com-
ponent in a software program functions at its very best.
ActiveState OEM distributions for Perl, Python, and Tcl
are guaranteed to be the highest-quality language distri-
butions available, rigorously tested for security, stability,
and quality. OEM products also include regular updates
and fixes so that companies are always working with
the latest, most secure release. Working with high-end
dynamic language distributions enables the development
of higher quality products.

Cross Platform Product Support Out-of-the-Box ActiveS-
tate language distributions are available on multiple
platforms including, Linux, Windows, Mac OS X, Solaris,
AIX, and HP-UX. There is no need to spend time prepar-
ing dynamic languages for cross-platform deployment
or troubleshooting common platform issues. ActiveState
distributions operate to the same level of quality across
all these diverse systems promising a consistent user
experience.

“The OEM Agreement allows us to bundle Perl with
our product so the installation and maintenance
process becomes easier and controlled. We estimate
that the [ActivePerl OEM license] saves us about
50K Euro per year on support and possible missed
deals.”

-WALTER VERHOEVEN, CREATIVE ASSOCIATES

BUILD VS. BUY

8

Hassle-Free Redistribution Rights

If Perl, Python, or Tcl must be redistributed with a soft-
ware product then the organization is responsible for the
appropriate licensing. However, this can be a complex
undertaking since there are dozens of different open
source licenses. Open source languages are made up of
thousands of libraries, modules, packages, and frame-
works — each with unique licensing requirements. Some
open source licenses, such as the common GPL license,
require companies to contribute all code back to the
community including their own modifications. This can
be problematic for companies that want to use dynamic
languages,but still keep their IP private.

Not doing due diligence when it comes to licensing
requirements can cost a company in intellectual prop-
erty infringement lawsuits, hefty lawyers’ bills, and public
embarrassment. ActiveState OEM licensing eliminates ad-
ministrative overhead and potential legal risk that can oc-
cur when including open source software in commercial
products. ActiveState carefully reviews all open source
licenses that are a part of ActivePerl, ActivePython, and
ActiveTcl and provide warranties for redistributing the
code safely. When ActiveState handles the licensing, or-
ganizations can rest easy knowing that they are safe from
legal risk and IP infringement. Plus, they can spend time
building software, not wading through complex licensing
requirements.

Increase Customer Satisfaction

Bundling ActivePerl, ActivePython or ActiveTcl with a
product improves your clients’ product experience since
they don’t have to download the code separately. The
result is a seamless out-of-the-box experience for cus-
tomers where the application works with fewer external

requirements. There’s also no risk that customers will
erroneously download incompatible versions of the
software.

An organization demonstrates reliability, integrity, and
professionalism by licensing open source correctly. If cus-
tomers know their purchase is covered by open source
licensing with ActiveState, they don’t have to go to the
hassle and expense of purchasing additional indemnifica-
tion or support.

Finally, if customers have specialized requirements for
dynamic languages, ActiveState can help with custom
development such as maintaining abandoned modules,
auditing code, and extending tooling. ActiveState custom-
ers can add Perl, Python, and Tcl experts to their team at
a moment’s notice.

BUILD VS. BUY

9

QUALITY COMPONENTS FOR QUALITY SOFTWARE

Dynamic languages are just one factor in a complex software project. However, when a company assembles software
from top-quality components, such as ActiveState language distributions, they will start with a solid foundation from
which to construct a first-rate software system that customers will love.

For help with dynamic language development, management, and licensing, please contact Ac-
tiveState at business-solutions@activestate.com or 1.866.510.2914 (toll free in North America)
to connect with an ActiveState dynamic languages expert about your upcoming development
projects.

1 Worldwide Costs of IT Failure - http://www.zdnet.com/article/worldwide-cost-of-it-failure-revisited-3-trillion/
2 Where did Healthcare.gov Go Wrong? http://blog.smartbear.com/code-review/where-did-healthcare-gov-go-wrong-lets-start-

witheverywhere/
3 Troubled Obamacare website wasn’t tested until a week before launch - http://www.washingtonexaminer.com/troubled-obam-

acarewebsite-wasnt-tested-until-a-week-before-launch/article/2537381
4 Obamacare Website Costs Exceed $2 Billion, Study Finds - http://www.bloomberg.com/news/articles/2014-09-24/obamacare-

website-costs-exceed-2-billion-study-finds
5 The World’s Biggest Civilian IT Project Finally Looks to Have Failed But Is the NHS IT Failure a Surprise - http://www.computer-

weekly.com/blogs/outsourcing/2011/09/the-worlds-biggest-civilian-it-project-finally-looks-to-have-failed-but-it-is-no-surprise.html
6 Government to Scrap NPfIT IT Programme Today - http://www.cio.co.uk/news/outsourcing/government-to-scrap-npfit-nhs-itpro-

gramme-today/
7 Dan Eggen and Griff Witte, “The FBI’s Upgrade That Wasn’t,” The Washington Post, August 18, 2006, http://www.washingtonpost.

com/wp-dyn/content/article/2006/08/17/AR2006081701485.html
8 Standish Group 2015 Chaos Report - http://www.infoq.com/articles/standish-chaos-2015

BUILD VS. BUY

ABOUT ACTIVESTATE
ActiveState believes that enterprises gain a competitive advantage when they are able to quickly create, deploy and efficiently manage software solutions that immediately create business value, but
they face many challenges that prevent them from doing so. The company is uniquely positioned to help address these challenges through our experience with enterprises, people and technology.
ActiveState is proven for the enterprise: more than two million developers and 97 percent of Fortune 1000 companies use ActiveState’s end-to-end solutions to develop, distribute, and manage
their software applications written in Java, Perl, Python, Node.js, PHP, Tcl and other dynamic languages. Global customers like Cisco, CA, HP, Bank of America, Siemens and Lockheed Martin trust
ActiveState to save time, save money, minimize risk, ensure compliance and reduce time to market.

© 2016 ActiveState Software Inc. All rights reserved. ActiveState, ActivePerl, ActiveState Komodo, ActivePerl Pro Studio, and Perl Dev Kit are registered trademarks of ActiveState. All other marks are
property of their respective owners

ActiveState Software Inc.
sales@activestate.com

Phone: +1.778.786.1100
Fax: +1.778.786.1133

Toll-free in North America:
1.866.631.4581

