
 1

SOFTWARE SUPPLY
CHAIN SECURITY
BUYERS GUIDE FOR
IMPORT TOOLS

 2

Executive Summary

The software supply chain isn’t a new concept, but in a post-Solarwinds world, it’s become
the focal point of efforts to improve cybersecurity in general, and the security of software
development in particular. The market result has been a gold rush as traditional software security
vendors have quickly positioned themselves as supply chain security vendors. Making heads or
tails of their claims can be confusing.

The process of importing third-party code into your organization is arguably the weakest link in
the software supply chain since it involves trusting thousands of open source developers with
whom you have no relationship.

• The number of open source languages/ecosystems in your development stack

• The lack of key best practices present in your import routine

• The fewer codebase updates you perform

A number of traditional and emerging tools discussed in this guide can help mitigate many of the
threats inherent in your software supply chain.

Software supply chain risks increase with:

https://www.activestate.com/blog/how-to-avoid-becoming-the-next-solarwinds/

 3

Introduction

Organizations are increasingly concerned with the security of their software supply chain, but
often have trouble navigating the ever-expanding labyrinth of open source and proprietary
software solutions that claim to help. While solutions exist across the entire software supply
chain, this section of ActiveState’s Buyers Guide to Securing the Software Supply Chain focuses
specifically on the tools used to secure the process whereby third-party code is brought into the
organization.

• Imported Code - any open source packages, code snippets, tools, or other third-party software brought into
the organization in order to streamline the software development process.

• Build Process – the process of compiling, building and/or packaging code, usually via an automated system
that also executes tests on built artifacts.

• Use/Deploy – the process of working with, testing and running built artifacts in dev, test and production.

Hackers are increasingly targeting software development systems, open source resources and
software build pipelines in order to gain economies of scale when it comes to compromising
software supply chains. A single compromised software artifact in a popular application can
potentially compromise hundreds or even thousands of downstream customers. It’s one of the
key reasons that software supply chains are increasingly under attack, with 2023 featuring twice
as many attacks as the past 3 years combined, despite the fact that 2019-2022 saw a 742%
increase1 in software supply chain attacks, year on year.

The software supply chain extends from:

1. Sonatype 9th Annual State of the Software Supply Chain

https://www.helpnetsecurity.com/2023/10/05/root-cause-open-source-risk/
https://www.helpnetsecurity.com/2023/10/05/root-cause-open-source-risk/

 4

With IBM reporting that the average cost of a supply chain attack has hit
$4.45M, requiring an average of 26 days to identify and contain, it’s no
wonder that software supply chain security tools budgets have become an
increasingly large part of the budget for security-conscious organizations.

74% of IT pros believe technologies like
static and dynamic application security
testing [SAST & DAST] are important,
but feel that those technologies aren’t
enough to protect them from supply

chain threats

 – ReversingLabs

“ “

As a result, Gartner is predicting that “By 2025, 45% of organizations
worldwide will have experienced attacks on their software supply chains,
a three-fold increase from 20212”. Online marketplace vendor Capterra
confirms the trajectory, citing the fact that “three-fifths (61%) of US
businesses have been directly impacted by a software supply chain threat”
in 2022, and as a result, more than 50% of organizations have lost trust in
legacy vendors due to supply chain attacks

2. Gartner report: How Software Engineering Leaders Can Mitigate Software Supply Chain Security Risks

https://www.infosecurity-magazine.com/news/software-supply-chain-attacks-hit/
https://healthitsecurity.com/news/trust-in-legacy-it-vendors-drops-as-supply-chain-security-issues-increase

 5

Securing the Weakest Link in the Supply Chain
The import process is often seen as the weakest link in the chain since it requires trusting
hundreds or even thousands of open source authors with whom the organization has no
relationship. After all, the open nature of open source ecosystems allows anyone to publish
anything without a rigorous process to eliminate threats prior to publication. As a result, each
organization must create their own process, implement with appropriate tools and solutions, to
ensure the integrity and security of the code they import.

First, you’ll need to get a grasp on the breadth, depth and change associated with your software
supply chain:

• Breadth – most organizations work with multiple open source languages, and import their code from more
than one public repository. Because there are no industry-wide standards in place today, each language and
repository may require its own solution.

• Depth – there is a large set of supply chain security & integrity best practices that can help, but only the
largest enterprises can hope to implement and maintain them all. You’ll need to find the biggest bang for
your buck.

• Change – most software artifacts have a short shelf life before bugs, vulnerabilities, incompatibility with
newer systems and other issues crop up. Correcting all these issues is difficult for all but the most dedicated
organizations to do in a timely manner. Automated solutions can help.

Figure 1:
multiple ecosystems and multiple dependencies multiply the effects of change across the import process

 6

Breadth of the Software Supply Chain

The breadth of the software supply chain expands every time you add a new open source
ecosystem to your development stack.While issues remain consistent, how they are expressed in
the language may differ greatly, requiring different sets of tools to deal with:

• Vulnerabilities - security issues in imported packages can pose significant risk.

 » Software Composition Analysis (SCA) tools can be used here to generate a manifest of all open
source components, along with their open source license(s) and known security vulnerabilities.

• Malware - packages containing malicious code can compromise your development environment or
software solution.

 » Code scanners can help identify threats such as typosquatted packages, malware, dependency
confusion, and more. Scanners come in many forms, from open source point solutions to
commercially sold security platforms. Collectively, they can help you erect a powerful, in-depth
defense, but even individually they can provide an effective solution depending on your need.

• Ecosystem-specific tools tend to be more robust, but will significantly increase costs to implement and
maintain if you work with more than one language.

• Commercial solutions tend to be more comprehensive and expensive, but may be more cost-effective in
the long run than trying to integrate and maintain multiple, best-in-class open source solutions.

While numerous open source and commercial solutions exist to help deal with each of these issues,
keep in mind that:

Depth of the Software Supply Chain
The depth of the software supply chain increases with each set of best practices you implement to
counter a potential threat vector. Key best practices include:
• Verifying Provenance - the origin of imported code should always be verified on import to ensure it has

followed best practices when it was developed and built/packaged for distribution.

 » Software attestations can be used here to help understand the risk of incorporating imported code
into a codebase. TestifySec Witness provides a framework for automating, normalizing, and verifying
software attestations.

• Dependency Vendoring - the best way to ensure the security and integrity of imported code is to vendor
the source code of all required open source dependencies and build them yourself. Unfortunately, this
means you are now responsible for patching and maintaining all of that third-party code, which can
overwhelm many organizations.

 » Automated dependency vendoring tools can help here by automatically managing dependencies,
building them all from source code, and then facilitating updates when components become
outdated or vulnerable.

https://www.activestate.com/blog/software-composition-analysis-sca-tools-compared/
https://www.activestate.com/blog/top-10-malicious-package-detectors/
https://github.com/testifysec/witness/
https://www.activestate.com/resources/white-papers/scalable-dependency-vendoring/

 7

• Quarantining - imported software artifacts should be quarantined in a repository during investigation/
scanning. You may also want to consider a separate repository for vulnerability identification and a further
one for “ready to use” artifacts.

 » Artifact repositories like Sonatype Nexus, JFrog Artifactory, or a similar solution can be used to
quarantine prebuilt artifacts.

Figure 2:
Quarantining third party components during the import process

Change in the Software Supply Chain

While the rate of change in the software supply chain can be managed using many of the tools
already discussed, too many organizations are still reluctant3 to update their codebase for a
number of reasons, including:

• Time & Resources - developers dedicated to fixing issues are developers not available to create new
features.

 » Many of the aforementioned SCA tools can help decrease the time developers spend investigating
issues by providing auto-updates.

• Breaking Changes - upgrading a package has a cascading effect on its dependencies, requiring multiple
updates to your runtime environment which can end up breaking the build, or worse: landing you in
dependency hell.

 » Look for automated dependency management tools here to help avoid dependency hell, while
streamlining the upgrade process.

3. Veracode’s State of Software Security v11: Open Source Edition

https://www.activestate.com/blog/how-to-automatically-eliminate-dependency-hell/
https://www.activestate.com/blog/automated-dependency-management/

 8

As the rate of discovered vulnerabilities continues to escalate year over year, organizations
need to become more proactive about not only updating their codebases, but ensuring known
vulnerable components aren’t incorporated in the first place.

2.1 billion OSS downloads with known
vulnerabilities in 2023 could have been
avoided because a better, fixed version

was available.”

 – Sonatype

Conclusions

It seems like every vendor is now a software supply chain security vendor, causing confusion in
the marketplace. But avoiding market confusion is not an option since it only makes businesses
increasingly susceptible to the threat of ransomware, malware, and other security risks.
Organizations need tangible solutions that can help them address threats when they first enter
the development process – on import – before they can do damage.

Following Biden’s Executive Order4 on improving cybersecurity, many are still trying to figure
out what that looks like for their own organization. As software supply chain attacks hit
unprecedented levels, it may be time to start rethinking whether downloading prebuilt open
source software makes sense anymore. Organizations that don’t vendor their dependencies and
build them from source code can only play catch up with supply chain security via traditional
AppSec tools – tools that are often working against an incomplete set of dependencies since
their dependency graph wasn’t generated at build time.

Dependency vendoring has always been a non-starter for all but the biggest enterprises, but
emerging automated solutions offer a cost-effective alternative. This will be the focus of the
second part of ActiveState’s Software Supply Chain Security Buyers Guide for Build Tools.

“

“
4. Executive Order on Improving the Nation’s Cybersecurity, MAY 12, 2021

 9

©2023 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®,
ActivePython®, Komodo®, ActiveGo™, ActiveRuby™, ActiveNode™, ActiveLua™, and The Open
Source Languages Company™ are all trademarks of ActiveState.

www.activestate.com
Toll-free in NA: 1-866.631.4581
solutions@activestate.com

Secure open source integration

