
THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 1

The ActiveState Approach
to Supply chain Levels for
Software Artifacts (SLSA)

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 2

The ActiveState Approach to Supply chain
Levels for Software Artifacts (SLSA)

Open source software’s speed and innovation benefits have made it an essential element of modern software

development, despite the unique security threats it engenders, such as typosquatting and dependency

confusion. These vectors can introduce various forms of malware into an Independent Software Vendor’s (ISV)

organization, which may then be propagated downstream to its customers.

It’s this force multiplier – a single cyberattack on a major ISV that can potentially compromise tens of thousands

of end user companies – that caused President Biden to issue his executive order aimed at improving the

United States’ cybersecurity stance. In response, Google launched an internal initiative that has since become

an industry-wide collaboration: Supply chain Levels for Software Artifacts or SLSA, which is a security framework

designed to:

•	 Prevent tampering within the software development process

•	 Improve the integrity of built artifacts

•	 Ensure the security of open source packages

•	 Secure the infrastructure your projects rely on

ActiveState is committed to helping developers ensure the security and integrity of the open source language

packages they use in their software development processes. To that end, we’ve been creating reproducible

builds since 1997, so we’re pleased that this essential capability has been identified as a key component in the

SLSA framework for securing the software supply chain. But with our ActiveState Platform, we’re delivering all the

controls required to generate SLSA Level 4 artifacts for the open source language runtime environments your

projects run on.

This paper will introduce each SLSA criteria, and detail how ActiveState can help you meet all requirements up

to and including the highest level of security and integrity: SLSA Level 4.

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://slsa.dev/

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 3

A build is the process by which source code is assembled into a built software artifact. The build process must

be secured against unknown or outside influence to avoid tampering. Builds should always be verifiable and

reproducible.

Build requirements

SLSA Requirement: All build steps must be fully defined in some sort of “build script”. The only manual

command permitted, if any, invokes the build script.

ActiveState Process: ActiveState uses “builders,” which are reusable scripts used to bootstrap native build

systems. These are invoked by a build wrapper that records all actions taken by the builders.

SCRIPTED BUILDS

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Scripted build ✓ ✓ ✓ ✓

SLSA Requirement: All build steps must be fully defined in some sort of “build script”. The only manual

command permitted, if any, invokes the build script.

ActiveState Process: ActiveState’s cloud-hosted build platform performs all builds from source without de

veloper intervention.

DEDICATED BUILD SERVICE

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Build Service
✓ ✓ ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Build as code ✓ ✓

BUILT AS CODE

SLSA Requirement: The build definition and configuration executed by the build service is verifiably derived

from text file definitions stored in a version control system.

Verifiably derived can mean either fetched directly through a trusted channel, or that the derived definition has

some trustworthy provenance chain linking back to version control.

ActiveState Process: All builds are bootstrapped by ActiveState-authored build scripts, which are hosted in a

private git repository.

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 4

SLSA Requirement: The build service ensures that the build steps run in an ephemeral environment, such as a

container or VM provisioned solely for this build, are not reused from a prior build.

ActiveState Process: ActiveState uses a mix of ephemeral containers (Windows, Linux) and VMs (macOS) for all

builds. All containers are discarded at the completion of each build step.

EPHEMERAL ENVIRONMENTS

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Ephemeral
Environments ✓ ✓

SLSA Requirement: The build service ensures that the build steps run in an isolated environment free of

influence from other build instances, whether prior or concurrent.

ActiveState Process:

•	 ActiveState’s build containers (Windows, Linux) and VMs (macOS) are isolated from one another, and
cannot contaminate other builds.

•	 ActiveState follows industry best practices for handling signing keys. Signing keys are not available during
artifact builds.

•	 ActiveState’s container and VM isolation prevents builds from affecting one another either concurrently or
subsequently.

•	 ActiveState’s artifacts are cached in a cloud-hosted, content-addressable storage solution.

ISOLATED BUILDS

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Isolated ✓ ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Parameterless ✓

SLSA Requirement: The build output cannot be affected by user parameters other than the build entry point and

the top-level source location. In other words, the build is fully defined through the build script and nothing else.

ActiveState Process: ActiveState Platform users have no direct control over build invocation or the build

environment. The Platform manages all required build resources and invocations automatically.

PARAMETERLESS BUILDS

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 5

SLSA Requirement: All transitive build steps, sources, and dependencies are fully declared up front with
immutable references, and the build steps run with no network access.

ActiveState Process:

•	 The ActiveState Platform’s dependency solver and build orchestrator ensure all dependencies are
resolved and satisfied prior to build invocation. Build scripts cannot modify any such references.

•	 The ActiveState Platform’s Inventory system maintains all metadata and relationships in perpetuity, and
maintains a history for all metadata.

•	 ActiveState’s build artifacts are stored in and served from secure cloud storage.

•	 All artifacts, including source code are fetched using secure channels from secure cloud storage.

•	 The build wrapper verifies the hash of all dependent artifacts, and validates the integrity of the build
system itself prior to invoking the build script(s).

•	 ActiveState builds are executed in a heavily protected cloud-hosted build environment.

HERMETIC BUILDS

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Hermetic ✓

SLSA Requirement: Re-running the build steps with identical input artifacts results in bit-for-bit identical
output. Builds that cannot meet this criteria MUST provide a justification why the build cannot be made
reproducible (currently this requirement is designated as “best effort”).

ActiveState Process: ActiveState artifacts generated from the same inputs will contain the same content,
although the checksums of the artifacts themselves may differ due to metadata stored in the archive formats
used. In general, however, if any build is requested of the platform with identical inputs, the platform will detect
this and serve the appropriate cached artifact, saving build time.

REPRODUCIBLE BUILDS

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Reproducible o

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 6

In the software industry, provenance refers to the traceability of components (e.g., ability to trace and verify

the source/origin of a component), as well as built artifacts produced during the development process (e.g.,

ability to trace and verify the build process). Here, provenance refers to the ability to prove a build has been

completed according to the requirements of the SLSA framework, which is established by providing metadata

that allows for this to be verified.

SLSA Requirement: The provenance is available to the consumer in a format that the consumer accepts. The

format SHOULD be in-toto SLSA Provenance, but another format MAY be used if both producer and consumer

agree and it meets all the other requirements.

ActiveState Process: Provenance information is available for build artifacts and source code from ActiveState

via several of its publicly available APIs. ActiveState will provide this information from a single source in SLSA’s

proposed in-toto ITE-6 attestation format.

SLSA Requirement: The provenance’s authenticity and integrity can be verified by the consumer. This SHOULD be

through a digital signature from a private key accessible only to the service generating the provenance.

ActiveState Process: ActiveState maintains a secure code signing system, which will be used to sign the

attestations.

Provenance Requirements

AVAILABLE

AUTHENTICATED

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Available ✓ ✓ ✓ ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Authenticated ✓ ✓ ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build -
Service Generated ✓ ✓ ✓

SLSA Requirement: The data in the provenance MUST be obtained from the build service (either because the

generator is the build service, or because the provenance generator reads the data directly from the build

service).

ActiveState Process: All provenance information is generated automatically by the ActiveState Platform from

source code ingestion to artifact generation.

SERVICE GENERATED

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 7

SLSA Requirement: Provenance cannot be falsified by the build service’s users.

ActiveState Process:

•	 End users have no way to influence the provenance data created by the ActiveState Platform. Digital
signatures on the provided attestations will guarantee that any tampering with this data is immediately
apparent.

•	 ActiveState maintains a secure code signing system which will be used to sign the above mentioned
attestations.

•	 ActiveState’s secure code signing system is completely isolated from the remainder of the platform.

•	 All build steps and provenance generation are performed within ActiveState’s secure, cloud-hosted
infrastructure.

•	 While the output artifact’s contents are difficult to predict prior to building, no user-supplied code is used
in generating the output artifact’s hash. This is calculated separately by the ActiveState Platform once the
build script has completed.

•	 The ActiveState Platform is predicated on never allowing non-reproducible builds.

SLSA Requirement: Provenance records all build dependencies that were available while running the build

steps. This includes the initial state of the machine, VM, or container of the build worker.

ActiveState Process: All of this information is recorded by the ActiveState Platform and made available via

several publicly available APIs. It will also be available in our in-toto ITE-6 attestation format.

NON-FALSIFIABLE

DEPENDENCIES COMPLETE

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Non Falsifiable ✓ ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Build - Dependencies
Complete ✓

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 8

Solutions must be able to show the provenance or original source for an artifact/metadata used in the build

process.

SLSA Requirement: The provenance MUST identify the output artifact via at least one cryptographic hash.

ActiveState Process: All output artifacts are hashed with SHA-256 automatically by the ActiveState Platform on

generation.

SLSA Requirement: The provenance identifies the entity that performed the build and generated the provenance.

ActiveState Process: All of this information is recorded by the ActiveState Platform and made available via several

publicly available APIs. It will also be available in our in-toto ITE-6 attestation format.

SLSA Requirement: The provenance identifies the top-level instructions used to execute the build.

ActiveState Process: The ActiveState Platform uses scripts called “builders” to create artifacts. The specific

builder, entry point, and parameters used to execute the build are recorded and made available via our public

API. It will also be available in our in-toto ITE-6 attestations.

Requirements on the contents of the provenance

IDENTIFIES ARTIFACT

IDENTIFIES BUILDER

IDENTIFIES BUILD INSTRUCTIONS

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Identifies Artifact ✓ ✓ ✓ ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Identifies Builder ✓ ✓ ✓ ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Identifies build instructions ✓ ✓ ✓ ✓

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 9

SLSA Requirement: The provenance identifies the repository origin(s) for the source code used in the build.

ActiveState Process: All of this information is recorded by the ActiveState Platform and made available via several

publicly available APIs. It will also be available in our in-toto ITE-6 attestation format.

SLSA Requirement: The provenance identifies the “entry point” of the build definition (see build-as-code defined

above) used to drive the build, including which source repo the configuration was read from.

ActiveState Process: All of this information is recorded by the ActiveState Platform and made available via several

publicly available APIs. It will also be available in our in-toto ITE-6 attestation format

SLSA Requirement: The provenance includes all build parameters under a user’s control.

ActiveState Process: All of this information is recorded by the ActiveState Platform and made available via several

publicly available APIs. It will also be available in our in-toto ITE-6 attestation format.

IDENTIFIES SOURCE CODE

IDENTIFIES ENTRY POINT

INCLUDES ALL BUILD PARAMETERS

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Identifies Source Code ✓ ✓ ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Identifies Entry Point ✓ ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Includes All Build
Parameters

✓ ✓

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 10

SLSA Requirement: The provenance includes a boolean indicating whether the build is intended to be

reproducible and, if so, all information necessary to reproduce the build.

ActiveState Process: The ActiveState platform is designed to actively disallow unreproducible builds, so all

artifact provenance will be indicated as reproducible.

SLSA Requirement: The provenance includes metadata to aid debugging and investigations. This SHOULD at

least include start and end timestamps, and a unique identifier to allow finding detailed debug logs (currently

this requirement is marked as “o” which means “best effort”).

ActiveState Process: The ActiveState platform records and stores all of the specified data for each commit,

although it has not yet surfaced in our user interface.

INCLUDES REPRODUCIBLE INFO

INCLUDES METADATA

SLSA Requirement: The provenance includes all transitive dependencies listed in “Dependencies Complete.”

ActiveState Process: The ActiveState Platform records all direct dependencies of an artifact as references to

those artifacts. Each of these dependent artifacts will have its own attestation which can be requested via the

aforementioned references. Hence, it will be possible to walk the entire graph of dependencies for an artifact

from its attestation.

INCLUDES ALL TRANSITIVE DEPENDENCIES

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Includes all transitive
dependencies ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Includes reproducible info ✓

Requirements SLSA1 SLSA2 SLSA3 SLSA4

Includes metadata o o o o

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 11

Where are we headed next?
ActiveState is actively participating in the SLSA working groups and keeping a close eye on the industry

standardization effort being driven by several industry stakeholders. While the standard is still in its infancy,

ActiveState is closely watching how it evolves in order to align our current practices with the emerging

framework.

Software supply chain security is key to eliminating vulnerabilities and vectors of attack that threaten the

security and integrity of software applications. Supply chain attacks are not new, but as open source usage

has grown, it’s more important than ever to ensure you are importing uncompromised code, building artifacts

securely and distributing uninfected software to your customers. In the face of incidents like SolarWinds,

Codecov, and many others, it’s time to reestablish trust in the software supply chain, and implementing SLSA is

a key first step.

https://slsa.dev/
https://www.activestate.com/blog/how-to-avoid-becoming-the-next-solarwinds/
https://www.activestate.com/blog/how-to-avoid-becoming-the-next-solarwinds/
https://www.activestate.com/blog/european-unions-supply-chain-security-guidelines-for-software-suppliers/

THE ACTIVESTATE APPROACH TO SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 12

ActiveState enables DevOps, InfoSec, and Development teams to improve their security posture while

simultaneously increasing productivity and innovation to deliver secure applications faster.

With a single platform that tames open source complexity, teams get a continuously secure software supply

chain, unparalleled observability, robust vulnerability management, continuous upgrades, and governance

support that enhance collaboration across the organization.

All from the trusted partner that pioneered and continues to lead enterprise adoption and use of open source

software.

About ActiveState

©2024 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®, ActivePython®, Komodo®, ActiveGo™, ActiveRuby™,
ActiveNode™, ActiveLua™, and The Open Source Languages Company™ are all trademarks of ActiveState.

www.activestate.com • Toll-free in NA: 1-866.631.4581 • solutions@activestate.com

Start An Enterprise Trial

https://www.activestate.com/solutions/contact-sales/

