
Mitigate Dependency
Confusion Risks

2MITIGATE DEPENDENCY CONFUSION RISKS

Executive Summary

Package managers have dramatically lowered the overhead of code reuse, leading to modern software’s

heavy reliance on third-party dependencies. Knowing this, bad actors exploit the trust that organizations have

established in code reuse infrastructure, targeting programming language package managers, open source

public repositories and binary artifact repositories.

The most popular class of new cyberattacks involve dependency confusion, which is an exploit that takes

advantage of the fact that software is often built using a mix of both internal and external dependencies. Software

development processes that don’t implement safeguards can become “confused” into installing a compromised

external dependency instead of the organization’s internal version. The result can be compromised commercial

software that is propagated downstream to an ISV’s customers where it is deployed as a trusted resource.

Best practices like namespacing, checksum and URL verification, dependency vendoring and using hermetically-

sealed build systems can all help mitigate dependency confusion risks. Alternatively, instead of building

environments from individual dependencies, consider creating them from secure, prebuilt runtime environments.

3MITIGATE DEPENDENCY CONFUSION RISKS

Introduction

Part of the beauty of modern software creation is that it’s easy to include third-party dependencies to help build

and subsequently deploy an application thanks to the use of open source language package managers. Need

a Node package? Just use npm to download and install it on demand. Want a Python module? Pip will include

it in your software environment in seconds.

The ease and simplicity with which third-party dependencies enable robust capabilities to be added has led to

the ubiquity of employing them in everything from small, homegrown business-specific apps, to commercial,

enterprise-class software. But this popularity is a double-edged sword, as it can also attract the attention of

malicious authors who are always looking for new attack vectors.

When third-party dependencies are combined with internally-developed dependencies, the stage is set for

systems to potentially become “confused” over which dependency to use. In this case, failure to verify the source

of a package can expose your organization to dependency confusion attacks in which a package manager

may inadvertently download a compromised third-party dependency from an external URL rather than the

local, internally-developed dependency.

According to the PortSwigger Top 10 Web Hacking Techniques of 2021, dependency confusion ranked number

one due to its:

1.	 Ubiquity - 89% of organizations rely on open source software, and 98% of applications incorporate open
source dependencies in their codebase.

2.	 Extensibility - the attack method is trivial to extend to any open source programming language that relies
on a package manager.

3.	 Effectiveness - dependency confusion is proven to be effective at targeting some of the largest, high-
profile enterprises.

While modern software development practices make it nearly impossible to avoid reliance on third-party

dependencies, there are best practices and tools that can help guard against software supply chain attacks like

dependency confusion. For example, one of the most effective anti-dependency confusion resources that can

help avoid the stigma of being the subject of a security breach headline is using pre-built runtime environments.

More on this technique later.

https://portswigger.net/research/top-10-web-hacking-techniques-of-2021
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html

4MITIGATE DEPENDENCY CONFUSION RISKS

What Is Dependency Confusion?

Dependency confusion is a software supply chain attack that substitutes malicious third-party code for a

legitimate internal dependency. There are various approaches to creating this kind of substitution, including:

•	 Namespacing – by uploading a malicious package to a public repository that is named similar to a trusted,

internally-used package, systems that omit a namespace/URL check may mistakenly pull in the malicious

package.

•	 DNS Spoofing – by using a technique like DNS spoofing, systems can be directed to pull dependencies

from malicious repositories while displaying what looks like legitimate, internal URLs/paths.

•	 Scripting – by modifying build/install scripts or CI/CD configurations, systems can be tricked into

downloading dependencies from a malicious source rather than a local repository.

1.	 A bad actor researches the name of a software dependency used internally by an organization to
develop their software application.

2.	 The bad actor creates a similar dependency, embeds malware, names it the same as the internal
dependency and sets the version number to be higher than the one discovered through research.

3.	 The bad actor uploads the compromised dependency to a public repository.

4.	The next time the package manager requests the specific dependency, it may pull the compromised
dependency from the public repository rather than the local repository (for example, pip will default to
installing the dependency with the highest version number).

Here’s what a typical dependency confusion attack scenario might look like:

The compromised dependency is typically a clone of the original (to fulfill all functional requirements for use

in an application), along with malicious code designed to exfiltrate data, implant a backdoor in the execution

environment, or otherwise implement a security threat.

Since the exploit’s discovery by security researcher Alex Birsan, who briefed the affected organizations before

publishing his findings in a Medium post on February 9, 2021, the threat of dependency confusion has grown.

Thousands of copycats have introduced hundreds of confusing NPM packages and executed numerous

real-world confusion attacks.

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://snyk.io/blog/snyk-200-malicious-npm-packages-cobalt-strike-dependency-confusion-attacks/
https://blog.reversinglabs.com/blog/npm-dependency-confusion-hacks-target-german-firms

5MITIGATE DEPENDENCY CONFUSION RISKS

•	 Implicit Trust in Public Repositories - far too many organizations continue to blindly trust open source

repositories despite the fact that they provide little in the way of security measures.

•	 Detection Difficulty - there is simply no means of scanning for dependency confusion problems until a

compromised dependency has already been included in your software.

The threat of dependency confusion is exacerbated by:

While dependency confusion doesn’t lead to fundamentally new types of security risks, it does represent a new,

never-before-seen vector of attack that security-conscious organizations will need to address.

Dependency Confusion Growth Timeline

Feb 9, 2021

Alex Birsan releases his research blog
ÒDependency Confusion: How I Hacked

Into Apple, Microsoft and Dozens of
Other companiesÓ

>500
copycat packages

Feb 22, 2021

Feb 12, 2021

300+ dependency
confusion packages

Mar 2, 2021

>700% increase in
copycat packages

>5,000
copycat packages

Mar 3, 2021

>10.000
copycat packages

Mar 15, 2021

>100% increase in
copycat packages

Mar 9, 2021

Feb 16, 2021

7000% increase in
dependency confusion

packages

1 week 4 week

https://www.activestate.com/blog/secure-pypi-the-problem-with-trusting-open-source-repositories/
https://www.activestate.com/blog/secure-pypi-the-problem-with-trusting-open-source-repositories/

6MITIGATE DEPENDENCY CONFUSION RISKS

Best Practices for Mitigating Dependency
Confusion Risks

Preventing dependency confusion exploits is key to securing the software supply chain, but there is no one

solution that can mitigate all potential substitution threats. Instead, there are a number of best practices that

can be implemented/followed to help manage the risks, including:

•	 Utilize Scopes/Namespaces - some package managers allow for namespaces, IDs or other prefixes,

which can be used to ensure that internal dependencies are pulled from private repositories defined with

the appropriate prefix/scope.

•	 Secure the Build Environment - create a dedicated, locked-down, secure build environment. This will help

mitigate the risk that attackers insert malicious dependency paths in build scripts and CI/CD configurations,

or pull in remote transitive dependencies during a build step.

•	 Validate Hashes/Checksums - wherever possible, validate that a dependency’s checksums match those

documented on official package sources. This can be difficult to automate with changing dependencies/

versions, but once a definitive set of dependencies is created, you can take advantage of your package

manager’s support for lock files and automated hash checking.

•	 Vendor Dependencies - rather than pulling dependencies from private and public repositories on demand

every time an environment is built, reduce the risk of dependency confusion by embedding the source code

for all dependencies – internal and external – in your code repository. Package managers can then be

configured (and verified) to utilize only a single source for all dependencies. While dependency vendoring

is an effective approach, be warned that it can also be quite complex.

Implementing a routine to verify URLs and checksum hashes is fairly simple and straightforward, but securing

and regularly auditing build environments or vendoring all external dependencies require far more time and

resources. In some cases, the cost to mitigate dependency confusion attacks may be disproportionate to the

actual risk.

https://www.activestate.com/resources/datasheets/activestate-platforms-secure-build-service/

7MITIGATE DEPENDENCY CONFUSION RISKS

Like dependency vendoring, using a pre-built environment such as that incorporated in the ActiveState Platform

restricts the need for URL validation to a single link. And using the ActiveState Platform also means you can avoid

all the complexity of dependency vendoring, as well.

•	 Scripted Builds – build scripts that cannot be accessed and modified within the build service, preventing

exploits.

•	 Ephemeral, Isolated Build Steps – every step in a build process executes in its own container, which

is discarded at the completion of each step. In other words, containers are purpose-built to perform a

single function, reducing the potential for compromise.

•	 Hermetic Environments – containers have no internet access, preventing (for example) dynamic

packages from including remote resources.

A far more cost-effective solution may be the use of secure, pre-built runtime environments such as those

offered by trusted vendors like ActiveState. In this case, all dependencies are built by the vendor and packaged

into a runtime suitable for deployment to development, test, production and other environments. Pre-built

runtime environments make dependency confusion attacks the responsibility of the vendor, but rather than

blindly trusting the vendor, ensure that their build process includes:

https://www.activestate.com/resources/datasheets/dependency-vendoring-without-the-work-activestate-managed-distributions/

Conclusions

Any software built with both internal and external dependencies is susceptible to dependency confusion attacks.

While no silver bullet currently exists to eliminate the threat, simply performing link and checksum validation

during the execution of a secure and locked-down build process can significantly reduce the risk of compromise.

Security-conscious organizations, however, can realize greater risk mitigation by adopting a dependency

management strategy like dependency vendoring, or by leveraging prebuilt runtime environments. These

techniques limit the number of URLs to be verified to one and one only.

Additionally, prebuilt runtime environments can offer further benefits beyond security, including:

•	 Faster container build times since there’s no need to wait for dependencies to be individually

downloaded and resolved.

•	 Greater environment consistency by limiting configuration drift through a single, central runtime

environment. Branches for development, test and production environments, as well as the entire CI/CD

pipeline, can then be programmatically derived from these.

•	 Simpler runtime deployment, requiring only a single command to install and/or update the target

environment.

9MITIGATE DEPENDENCY CONFUSION RISKS

ActiveState enables DevOps, InfoSec, and Development teams to improve their security posture while

simultaneously increasing productivity and innovation to deliver secure applications faster.

With a single platform that tames open source complexity, teams get a continuously secure software supply

chain, unparalleled observability, robust vulnerability management, continuous upgrades, and governance

support that enhance collaboration across the organization.

All from the trusted partner that pioneered and continues to lead enterprise adoption and use of open source

software.

About ActiveState

©2024 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®, ActivePython®, Komodo®, ActiveGo™, ActiveRuby™,
ActiveNode™, ActiveLua™, and The Open Source Languages Company™ are all trademarks of ActiveState.

www.activestate.com • Toll-free in NA: 1-866.631.4581 • solutions@activestate.com

Start An Enterprise Trial

https://www.activestate.com/solutions/contact-sales/

