
Scalable Dependency Vendoring 1

Scalable Dependency
vendoring

A COST-EFFECTIVE PAT H TO DEPENDENCY MANAGEMENT

Scalable Dependency Vendoring 2

Executive Summary

DevOps teams that have experimented with different dependency management strategies often settle for self-
vendoring as “the least worst” way to manage their open source dependencies, since it solves many common
issues despite the complexities it introduces.

However, for software development managers concerned with maximizing the velocity of their teams, dedicating
developers to non-differentiating tasks like dependency management is a poor use of valuable resources. Instead,
the time and resources spent on dependency management tasks are often better spent on creating features and
functionality that differentiate the organization’s offerings from competitors.

For this reason, DevOps teams typically automate dependency management tasks wherever possible to reduce
developer burden. However, automation tools can often create larger workload challenges than they solve. For
example, automating the identification of vulnerabilities is merely the tip of the iceberg, since it does nothing to help
with the lengthy, manual remediation process.

Dependency automation tactics rarely cost-effectively scale across any enterprise that is characterized by multiple
development teams working with diverse technology stacks. While better automation tools are always welcome,
software development managers may want to explore alternative approaches, such as outsourcing dependency
vendoring to a trusted service provider.

Scalable Dependency Vendoring 3

Introduction

The software industry’s widespread adoption of open source software has resulted in the continuous reuse
of open source libraries to gain specific functionality. These libraries, written by members of the open source
community, become dependencies of the commercial software. While employing open source saves time and
promotes innovation, it has also created the need for developers to continuously track and manage third-party
dependencies to ensure that their project builds successfully without introducing known vulnerabilities. All of which
dramatically increase operational costs and time to market.

Effective dependency management helps reduce process variability and increase predictability. But in practice,
software vendors continue to struggle with choosing, using and maintaining open source dependencies effectively.
For this reason, multiple dependency management solutions have been proposed and tried over the past decades,
including:

Relying on a language’s package manager to install dependencies on demand from a public repository.

•	 Pros: easy to set up; community supported, and allows a highly automatable “infrastructure as code” approach.

•	 Cons: tooling proliferates, often requiring one or more tools per operating system and per language. The
availability of prebuilt packages can vary by OS, or disappear altogether such as when dependencies become
corrupted or deleted from public repositories.

Relying on an artifact repository to cache a standard, shared set of approved dependencies for all development
teams to use.

•	 Pros: creates team and environment consistency; allows for provenance tracking, and provides a central
location for dependency import, distribution, management and auditing.

•	 Cons: Poor support for native libraries; inconsistent states are still possible with manually-driven installations;
expensive.

Relying on Virtual Machines (VMs) or containers to provide consistent environments.

•	 Pros: Better support for consistent use of native packages; faster deployment speeds, and less tooling
requirements by users.

•	 Cons: build complexity now requires multiple tools per OS, per language, and per image. Additional complexity
arises with versioned image distribution, updating, and creating backwards compatibility.

https://developer-tech.com/news/2022/jan/10/open-source-developer-corrupted-own-popular-libraries/
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code/

Scalable Dependency Vendoring 4

The amount of work associated with updating dependencies, the opportunity costs they engender, and the risk
of breaking the build all serve as drags on update frequency. It’s this sharp distinction between “risk” and “work”
associated with updating dependencies where most DevOps teams end up inflicting self-harm, including:

Alternatively, critical vulnerabilities go unpatched, exposing the organization to cyberattack. To minimize these risks
and costs, some enterprises have turned to self-vendoring despite the complexities it engenders.

•	 Lagging performance as outdated dependencies forego speed and functionality enhancements.

•	 Instability, which inevitably occurs when an update to a critical vulnerability is applied, resulting in a rabbit hole
of fixes that break the build, requiring more fixes, and so on.

•	 “Works on my machine” issues that arise from the update being inconsistently applied across all teams/
environments.

Most DevOps teams start by relying on package managers and may migrate to other solutions as limitations are
uncovered. More commonly, rather than address the limitations of dependency management best practices,
a surprising number of DevOps teams simply ignore their dependencies once they’ve included them in their
codebase, as evidenced by numerous reports and surveys:

Open source libraries are constantly evolving; what
appears secure today may not be tomorrow.

Despite this dynamic landscape, 79 percent of the
time, developers never update third-party libraries
after including them in a codebase.

79%

Source: Veracode’s State of Software Security v12

https://blog.cloudflare.com/javascript-libraries-are-almost-never-updated/
https://www.veracode.com/state-of-software-security-report

Scalable Dependency Vendoring 5

Dependency Vendoring Pros & Cons

Dependency vendoring is a dependency management strategy that requires the inclusion of third-party source
code in a product’s codebase. In practical terms, that means checking a single version of each open source
dependency into the source control system rather than relying on a package manager to install dependencies into
environments on demand.

•	 Dependency Conflicts - Including a specific
version of a dependency in a codebase ensures
compatibility with all the other components in that
codebase.

•	 Broken Builds - Package managers (unless explicitly
instructed otherwise) will import newer versions of
dependencies and/or transitive dependencies as
they become available, potentially breaking the build.

•	 Inconsistencies - Self-vendoring ensures successful
builds work reliably and consistently on every team
member’s machine.

•	 Deficiencies - When bugs, vulnerabilities or requests
for functionality are slow to be implemented by
third-party authors and maintainers, DevOps teams
can customize, patch and/or add new functionality
themselves.

However, self-vendoring is not a panacea, because
it can often create as many problems as it solves,
including:

•	 Complex Builds - Building dependencies and all
of their transitive dependencies from source code
for all major operating systems requires extensive
language and OS expertise that many teams may
lack.

•	 Unsecure Applications - Once checked in to a code
repository, dependencies are rarely updated for fear
of breaking the build. This leads to buggy codebases
riddled with security holes.

•	 Increased Complexity - Dependency and transitive
dependency source code inflates the source tree,
making tasks like code review, license audits, or even
just checking out the codebase overly difficult.

•	 Developer Stress - DevOps teams that standardize
on a set of dependencies for every project can create
internal friction as teams make demands on each
other to fix, update, patch, or otherwise manage the
dependency they checked in.

Experienced DevOps teams that have tried managing their dependencies with native package managers, artifact
repositories and special-built containers/VMs already understand the tradeoffs between each strategy, and have
settled on self-vendoring because it best fits their software development processes despite its drawbacks. Following
best practices can help counter the weaknesses.

For those who adopt it, self-vendoring represents a
viable way to solve the limitations of other dependency
management strategies, such as:

Scalable Dependency Vendoring 6

Dependency Vendoring Best Practices
Dependency vendoring makes third-party code the responsibility of internal development teams who already
have their own code to manage. This results in a tradeoff between time and resources spent on low-value
work associated with managing dependencies, versus high-value coding of differentiating features and
functionality. Best practices can help minimize non-differentiating work.

A dependency graph is a data structure that shows the inter-relational dependencies for each entity in the
software product. Essentially, it’s a diagram to visualize a product’s interdependencies, and by extension, its
complexity and maintainability.

CREATE DEPENDENCY GRAPHS/SBOMS

Source: dependency graph for TinyTag explorer

A Software Bill Of Materials (SBOM) is an alternative way of enumerating all of the components in a software
product, along with each component’s name, version, license, and supplier. Both methods can help software
vendors understand the risk posed by the proliferation of dependencies.

MINIMIZE THE NUMBER OF DEPENDENCIES
Prior to the availability of dependency managers, creating a dependency for an eight-line code library was
a rare event, because it created too much overhead for minimal benefit. Package managers have greatly
simplified this process. But even vendoring an eight-line dependency into a codebase is a non-trivial act since
it still requires vetting for:

•	 Code quality

•	 Maintainability

As a result, DevOps should weigh the cost effectiveness of rewriting a dependency as native code, instead.

•	 Security/vulnerabilities

•	 Licensing

•	 Transitive dependency quality, maintainability and
security

http://www.tarind.com/depgraph.html

Scalable Dependency Vendoring 7

ABSTRACT DEPENDENCIES

Open source dependencies are written by third parties that are under no contractual obligation to update,
maintain, or improve their code. In some cases, newer versions of a dependency may take the existing functionality
in unexpected (and undesired) directions, introduce a fatal bug or vulnerability, or be abandoned altogether. For
these reasons, code must be written in a way to ensure that existing dependencies can be replaced, substituted, or
re-written with minimal effort by abstracting the way they’re implemented.

AUTOMATE DEPENDENCY MANAGEMENT

Trying to manually manage all of the tasks associated with dependency vendoring is a non-starter. Instead, use
dependency automation tools to help manage tasks such as:

•	 Security - Third-party services like GitHub’s dependabot or Software Composition Analysis (SCA) tools

automatically identify dependency vulnerabilities in a timely manner, and may also suggest remediation

options.

•	 Compliance - The same SCA tools can also be used to identify the open source licenses in dependencies, and

help ensure compliance with the organization’s licensing guidelines.

•	 Building from Source - Third-party CI/CD solutions are typically used to build dependencies from source code

and package them for deployment on one or more target platforms.

•	 Control - Making a set of pre-vetted, approved dependencies available for use by an organization’s teams (and

managing them over time) is easier if they’re located in a central artifact repository.

It should be noted that, despite its many benefits, dependency management automation falls short of delivering a
complete solution. For starters, automating all of these tasks requires DevOps to cobble together multiple tools and
processes, since no existing solution automates all of them out of the box. Additionally, it’s one thing to be notified of
a vulnerability and a newer version of the dependency that resolves it, but quite another to build that new version,
ensure that it works within existing environments, and then redeploy/update development, test and production
instances. In practice, this kind of self-serve automation requires developers to dedicate a large chunk of their time
to continuously managing dependencies rather than writing code, which increases operational costs and time to
market.

As an alternative, consider employing an outsourcing service that can manage dependencies on your behalf.
For example, ActiveState’s “managed distribution” service securely builds, monitors, maintains, remediates
and packages open source dependencies into dev, test and production runtime environments on behalf of
development teams, no matter their deployment platform. As a result, DevOps can minimize the time and resources
needed to ensure that dependencies are up to date, vulnerability free, and haven’t suffered from configuration drift,
thereby keeping the environment in sync with the development, test and production environments.

Scalable Dependency Vendoring 8

Conclusions
Dependencies are now an established foundation stone in the software development process, but the way
dependencies are managed continues to evolve. Software development managers have implemented a
number of tools based on current best practices, creating processes that evaluate, track and attempt to
reduce dependency risk - from the original adoption decision, all the way through to production.

However, enterprises are beginning to realize the high opportunity cost of dependency management. While
dependency managers themselves have essentially eliminated the cost of downloading and installing a
dependency, the cost of updating, remediating, rebuilding and redeploying a dependency continues to grow.
In fact, building and managing dependencies requires language and operating system expertise, which often
requires dedicating some of the organization’s most experienced and valuable resources.

Dependency automation tactics rarely cost-effectively scale across any enterprise characterized by multiple
development teams working with diverse technology stacks. DevOps teams concerned with the security and
compliance risks posed by the use of third-party dependencies, as well as time to market for their software
offerings, should look to emerging technologies that can minimize the time and resources allocated to
dependency management. Alternatively, explore outsourcing dependency vendoring to a trusted service
provider.

Scalable Dependency Vendoring 9

ActiveState enables DevOps, InfoSec, and Development teams to improve their security posture while
simultaneously increasing productivity and innovation to deliver secure applications faster.

With a single platform that tames open source complexity, teams get a continuously secure software supply
chain, unparalleled observability, robust vulnerability management, continuous upgrades, and governance

support that enhance collaboration across the organization.

All from the trusted partner that pioneered and continues to lead enterprise adoption and use of open source
software.

About ActiveState

©2024 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®, ActivePython®, Komodo®, ActiveGo™, ActiveRuby™,
ActiveNode™, ActiveLua™, and The Open Source Languages Company™ are all trademarks of ActiveState.

www.activestate.com • Toll-free in NA: 1-866.631.4581 • solutions@activestate.com

Start An Enterprise Trial

https://www.activestate.com/solutions/contact-sales/

