
Solving Dependency Hell 
at Enterprise Scale
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About ActiveState
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Used by Millions of Developers and 97% of Fortune 1000

20+ Years of Open Source Language Experience



Introductions
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■ Session: 30 minutes; Live Q&A: 15 minutes

■ You can also ask questions in the Q&A tab

■ There will be two polls and a survey afterwards - your feedback is crucial!

■ Recording of this will be available and sent to you

Housekeeping
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■ Time Managing Dependencies

■ Causes of Dependency Hell

■ Best Practices: Pros & Cons

■ ActiveState Platform

■ Demo

■ Q&A

Agenda
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~75% of developers
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Time Spent Managing Dependencies



■ Newbies & out of date READMEs

■ Incompatible packages you require (new features/ 

bug fixes/security updates)

■ New operating environment

■ Installers don’t check existing dependencies before 

stepping on them

■ Monkey patching third-party code

■ Using multiple package managers per language 

(ie., pip + conda for Python)
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How Did We Get Here?
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Poll: How much time do your devs spend 
managing dependencies?

■ <10% of a sprint

■ 10-25%

■ 25-50%

■ >50%



■ Don't want to touch the environment since it might break the build

■ Updates snowball if not fixed quickly enough, making the problem worse

■ “Works on my machine” & environment reproducibility issues

■ Auditing open source dependencies becomes increasingly difficult
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Ramifications of Poor Dependency Management



1. Rely on package managers and direct repository access

2. Repository Proxy/Caching

3. Standardize Native Deps with VMs/Container Images

4. Vendor code under source control
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Tactics for Managing Dependency Hell



PROS
■ Easy to set up

■ Community support

■ Infrastructure as code
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CONS
■ Tool proliferation: you need O + L tools

■ Availability of prebuilt packages vary by OS 

(they'll have to be built at some point)

■ Poor locking support leads to inconsistent 

states

■ Things change on the Internet

Rely on Package Managers



PROS
■ Keep teams and environments consistent 

(mostly)

■ Modest level of provenance tracking

■ Share internally built artifacts

■ Central place to audit package use

■ Vet packages before others use them
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CONS
■ Poor support for native libraries

■ Inconsistent states still possible

■ Building still an issue

■ Vetting introduces friction 

Repository Proxy/Caching



PROS
■ Better support for consistent use of native 

packages

■ Faster deployment speeds

■ Reduces the number of tools downstream 

consumers need to worry about
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CONS
■ No universal image format. Tool usage is 

now O+L+I for DevOps

■ Building and using images is hard

■ Distribution mechanic synchronization, 

backwards compatibility

■ Multiple project issues

■ Even more vetting friction

VMs/Container Images - (for native libraries)



PROS
■ Building from source is the ultimate way to 

support Native

■ Support for provenance tracking

■ Allows for customization and patching that 

upstream authors may be slow to bring in

14

CONS
■ Need to setup a CI system and toolchains to 

support building

■ Need to be an expert for each supported OS

■ Need a local build process tool like Bazel, 

Make, Scons, etc.

■ Need artifact storage

Vendoring Dependencies (reduce vetting friction) 



PROS
■ It's someone else problem!
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CONS
■ Finding something to do with your free time

Make it Someone Else's Problem
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Poll: How do you manage dependencies?

■ Use native package manager to pin everything

■ Use a pre-resolved set of dependencies in an artifact repository

■ Use VM/Container base images

■ Self vendor all dependencies in source control system



■ $$

■ Optimal utilization of your most valuable devs

■ Maximize dev satisfaction by letting them work on the things they want to work on

■ Delayed time to market

The Need for Good Dependency Management
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ActiveState Platform ― Your Team's Supply Chain 
for Trusted Open Source Artifacts
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Includes:

■ Catalog of 4M+ Vendored Open Source Components & Recipes

■ Universal Dependency Solver

■ Hermetically Sealed Multi-OS Build Farm

■ Declarative Project Oriented UX/API

■ Powerful Revision Control Features



■ Build

■ Distribute

■ Maintain 

■ Monitor

Single Set of Cloud Based Cross Platform Tools 
for: 
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Runtimes for your Open Source based projects
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How it Works



Create a Project with Requirements and 
Operating Systems
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ActiveState Resolves the Complete Set of 
Dependencies
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Including native libraries!



All Components are Built, Hermetically Sealed, 
in the Cloud from Source!
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An Array of Distribution Mechanisms

24

Coming Soon!



We've Marries Dependency Management with 
Revision Control
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Every Dependency Change is Tracked, Including 
who Made it and Why
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Includes Fine Grain Control of Dependencies by 
Operating Environment
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ActiveState Monitors for Risks and Suggests 
Upgrades Where Appropriate
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Existing PRojects Can be Used as Templates
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Platform Demo
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Demo: Getting Out of Dependency Hell
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https://www.youtube.com/watch?v=4WIL_cNVZ1E

https://www.youtube.com/watch?v=4WIL_cNVZ1E


Next Steps

Schedule a demo with our product experts:
https://www.activestate.com/get-demo/

Learn more about dependency management:
https://www.activestate.com/blog/dependency-resolution-optimization
-activestates-approach/

Try the ActiveState Platform for free:
https://platform.activestate.com/
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https://www.activestate.com/get-demo/
https://www.activestate.com/blog/dependency-resolution-optimization-activestates-approach/
https://www.activestate.com/blog/dependency-resolution-optimization-activestates-approach/
https://platform.activestate.com/


Webinar Feedback

Take our quick survey!
https://www.surveymonkey.com/r/dependency-hell
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https://www.surveymonkey.com/r/dependency-hell

