
Solving Dependency Hell 
at Enterprise Scale

1



About ActiveState

2

Used by Millions of Developers and 97% of Fortune 1000

20+ Years of Open Source Language Experience



Introductions

3

Scott Robertson
CTO

Dana Crane
Product Marketing Manager



■ Session: 30 minutes; Live Q&A: 15 minutes

■ You can also ask questions in the Q&A tab

■ There will be two polls and a survey afterwards - your feedback is crucial!

■ Recording of this will be available and sent to you

Housekeeping

4



■ Time Managing Dependencies

■ Causes of Dependency Hell

■ Best Practices: Pros & Cons

■ ActiveState Platform

■ Demo

■ Q&A

Agenda

5



~75% of developers

6

Time Spent Managing Dependencies



■ Newbies & out of date READMEs

■ Incompatible packages you require (new features/ 

bug fixes/security updates)

■ New operating environment

■ Installers don’t check existing dependencies before 

stepping on them

■ Monkey patching third-party code

■ Using multiple package managers per language 

(ie., pip + conda for Python)
7

How Did We Get Here?



8

Poll: How much time do your devs spend 
managing dependencies?

■ <10% of a sprint

■ 10-25%

■ 25-50%

■ >50%



■ Don't want to touch the environment since it might break the build

■ Updates snowball if not fixed quickly enough, making the problem worse

■ “Works on my machine” & environment reproducibility issues

■ Auditing open source dependencies becomes increasingly difficult

9

Ramifications of Poor Dependency Management



1. Rely on package managers and direct repository access

2. Repository Proxy/Caching

3. Standardize Native Deps with VMs/Container Images

4. Vendor code under source control

10

Tactics for Managing Dependency Hell



PROS
■ Easy to set up

■ Community support

■ Infrastructure as code

11

CONS
■ Tool proliferation: you need O + L tools

■ Availability of prebuilt packages vary by OS 

(they'll have to be built at some point)

■ Poor locking support leads to inconsistent 

states

■ Things change on the Internet

Rely on Package Managers



PROS
■ Keep teams and environments consistent 

(mostly)

■ Modest level of provenance tracking

■ Share internally built artifacts

■ Central place to audit package use

■ Vet packages before others use them

12

CONS
■ Poor support for native libraries

■ Inconsistent states still possible

■ Building still an issue

■ Vetting introduces friction 

Repository Proxy/Caching



PROS
■ Better support for consistent use of native 

packages

■ Faster deployment speeds

■ Reduces the number of tools downstream 

consumers need to worry about

13

CONS
■ No universal image format. Tool usage is 

now O+L+I for DevOps

■ Building and using images is hard

■ Distribution mechanic synchronization, 

backwards compatibility

■ Multiple project issues

■ Even more vetting friction

VMs/Container Images - (for native libraries)



PROS
■ Building from source is the ultimate way to 

support Native

■ Support for provenance tracking

■ Allows for customization and patching that 

upstream authors may be slow to bring in

14

CONS
■ Need to setup a CI system and toolchains to 

support building

■ Need to be an expert for each supported OS

■ Need a local build process tool like Bazel, 

Make, Scons, etc.

■ Need artifact storage

Vendoring Dependencies (reduce vetting friction) 



PROS
■ It's someone else problem!

15

CONS
■ Finding something to do with your free time

Make it Someone Else's Problem



16

Poll: How do you manage dependencies?

■ Use native package manager to pin everything

■ Use a pre-resolved set of dependencies in an artifact repository

■ Use VM/Container base images

■ Self vendor all dependencies in source control system



■ $$

■ Optimal utilization of your most valuable devs

■ Maximize dev satisfaction by letting them work on the things they want to work on

■ Delayed time to market

The Need for Good Dependency Management

17



ActiveState Platform ― Your Team's Supply Chain 
for Trusted Open Source Artifacts

18

Includes:

■ Catalog of 4M+ Vendored Open Source Components & Recipes

■ Universal Dependency Solver

■ Hermetically Sealed Multi-OS Build Farm

■ Declarative Project Oriented UX/API

■ Powerful Revision Control Features



■ Build

■ Distribute

■ Maintain 

■ Monitor

Single Set of Cloud Based Cross Platform Tools 
for: 

19

Runtimes for your Open Source based projects



20

How it Works



Create a Project with Requirements and 
Operating Systems

21



ActiveState Resolves the Complete Set of 
Dependencies

22

Including native libraries!



All Components are Built, Hermetically Sealed, 
in the Cloud from Source!

23



An Array of Distribution Mechanisms

24

Coming Soon!



We've Marries Dependency Management with 
Revision Control

25



Every Dependency Change is Tracked, Including 
who Made it and Why

26



Includes Fine Grain Control of Dependencies by 
Operating Environment

27



ActiveState Monitors for Risks and Suggests 
Upgrades Where Appropriate

28



Existing PRojects Can be Used as Templates

29



Platform Demo

30



Demo: Getting Out of Dependency Hell

31

https://www.youtube.com/watch?v=4WIL_cNVZ1E

https://www.youtube.com/watch?v=4WIL_cNVZ1E


Next Steps

Schedule a demo with our product experts:
https://www.activestate.com/get-demo/

Learn more about dependency management:
https://www.activestate.com/blog/dependency-resolution-optimization
-activestates-approach/

Try the ActiveState Platform for free:
https://platform.activestate.com/

32

https://www.activestate.com/get-demo/
https://www.activestate.com/blog/dependency-resolution-optimization-activestates-approach/
https://www.activestate.com/blog/dependency-resolution-optimization-activestates-approach/
https://platform.activestate.com/


Webinar Feedback

Take our quick survey!
https://www.surveymonkey.com/r/dependency-hell

33

https://www.surveymonkey.com/r/dependency-hell

