
Lessons for 2022

State
of Software
Supply Chain
Security 2021

One - Vulnerability Remediation
Two - Security & Integrity of Software Development Processes

Vulnerability Remediation is a well-known process with its own best practices that are
well documented elsewhere. This survey focuses on the security and integrity of key
software development processes, including:

The survey garnered more than 1500 responses from coders, security experts and open
source advocates worldwide at organizations ranging from small businesses to large
enterprises. The results point to a number of worrisome trends, including:

Executive Summary
Software supply chain security encompasses two main disciplines:

Import Best practices for securely importing third-party code,
such as open source software.

Build Best practices for securely building software
components from source code.

Run Best practices for securely working with and running
software.

Software supply chain security is currently an immature discipline.

Build reproducibility is by far the best practice with the least adoption (without
reproducibility, software built from source code cannot be deemed secure).

Implicitly trusting insecure open source repositories is a growing risk. More
discipline is required to secure imported code.

Implementing an end-to-end secure software supply chain is a non-trivial undertaking.
Integrating multiple point solutions and custom code can be both costly and time
consuming. Organizations should look for turnkey solutions that can help bridge the gap
quickly to avoid becoming compromised by bad actors.

activestate.com/state-of-software-supply-chain-security/ Page 02

Table of Contents

ActiveState Survey: Software Supply Chain Security 04
ActiveState and the Software Supply Chain – What’s the Connection? 05

Part 1 - Demographics 06
 Q1 - What is the Size of Your Organization? 07

 Supply Chain Security Rating by Organization Size 08
 Supply Chain Security Rating by Geographic Region 09
 Q2 - What Best Describes Your Role/responsibilities? 10

 Roles by Organization Size 11

Part 2 - Import Cntrols 12
 Q3 - How Do You Verify Imported Open Source Code? Check All That Apply. 14

 Trust by Organization Size 16
 Import Controls by Organization Size 17

Part 3 - Build Controls 18
 Q4 - Do You Build the Open Source Packages You Use From Source Code? 20
 Building From Source Code By Organization Size 21
 Q5 - How Do You Ensure Open Source Builds Are Secure? Check All That Apply. 22

 Build Controls By Organization Size 24

Part 4 - Run Controls 25
 Q6 - Do You Work With Signed Packages? 27
 Q7 - Does the Signature Include the Following Information

 Via a Cryptographic Hash? Check All That Apply. 28

Key Takeaways 30
About ActiveState 32

activestate.com/state-of-software-supply-chain-security/ Page 03

The open source software supply chain has always been susceptible to cyberattack, not
least because it’s composed of public repositories that feature unsigned software
uploaded by anyone that cares to contribute to the ecosystem.

With hundreds of thousands of developers submitting millions of software assets to
dozens of repositories that provide little to no guarantee of the security or integrity of
those software assets, the message is clear: user beware.

This survey was undertaken to help understand what wary organizations are doing to limit
their exposure to the potentially malicious and/or compromised software they import and
use within their software development processes. Specifically, the survey examines the
implementation of best practices during the import, build and run stages.

The survey results are also instructive in helping ActiveState identify gaps in the software
supply chain that our universal package management platform - the ActiveState Platform
- can fill.

By reading these survey results, organizations can get an understanding of what works,
what doesn’t, and how they can improve their best practices so as to increase the security
and integrity of their software supply chain.

Import The process of importing third-party tools, libraries, code
snippets, packages and other software resources in order to
streamline development efforts.

Build The process of compiling, building and/or packaging code,
usually via an automated system that also executes tests on
built artifacts.

Run The process of working with, testing and running built
artifacts in development, test and production environments.

ActiveState Survey:
Software Supply Chain Security

activestate.com/state-of-software-supply-chain-security/

Page 04

Page 04

ActiveState and the Software Supply Chain
- What’s the Connection?

With a 20+ year history of creating open source language distributions used by
organizations both large and small, we’ve experienced first hand the kinds of supply chain
risks enterprises need to wrestle with when importing, building and working with open
source components. It’s one of the reasons we built the ActiveState Platform, which can
help organizations secure their Python, Perl, Tcl and Ruby supply chains by providing a
turnkey service that’s quick to set up, easy to use and highly automated.

Secure Import Process
Source code is imported, vetted and flagged for
maintainability, security and commercial use.

Secure Build Service
Automated, scripted builds that employ ephemeral, isolated
and hermetically sealed (i.e., no public network access)
environments for each build step.

Securely Built Artifacts
Developers and DevOps gain verifiably reproducible builds
that contain artifacts featuring non-falsifiable provenance
(ie., each artifact can be traced to its original source).

(coming soon)

The ActiveState
Platform provides:

activestate.com/state-of-software-supply-chain-security/ Page 05

The ActiveState Supply Chain Security Survey was taken by more than 1500 respondents
who work at organizations of all sizes, but tend to occupy one of three broad roles
associated either with working with code, securing code, or providing open source
governance.

The survey was
made available
worldwide, but was
dominated by
responses from the
United States:

The fact that the survey was dominated by respondents from the US is likely indicative of
an increased regional awareness given the number of local, high profile supply chain
attacks like SolarWinds, which prompted US President Biden to issue an Executive Order
deploring the current state of supply chain security.

Demographics

PART 1

72%
North America

12%
Asia Pacific

10%
European Union

6%
Rest of the World

activestate.com/state-of-software-supply-chain-security/ Page 06

https://www.activestate.com/blog/how-to-avoid-becoming-the-next-solarwinds/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc
https://www.activestate.com/blog/president-biden-secure-your-software-supply-chain/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

Q1 - What is the size of your organization?

42%
SMB

42% of respondents work at Small & Medium Sized Businesses, defined
as organizations with less than 200 employees.

47%
MSB

47% of respondents work at Mid-Sized Businesses, defined as
organizations with 200 to 2,000 employees.

11%
LE

11% of respondents work at Large Enterprises, defined as organizations
with more than 2,000 employees.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SMB

MSB

LE

42%

47%

11%

activestate.com/state-of-software-supply-chain-security/ Page 07

Software Supply Chain Security Rating
by Organization Size
The survey provided an overall supply chain security rating for all participants, based on
their responses. All questions were weighted evenly since the security of a software
supply chain is only as strong as the weakest link.

In general, the survey results indicate that supply chain security is not a mature discipline, no
matter the size of the company. However, smaller organizations tended to be rated poorer,
while larger organizations dominated the “Excellent” rating.

There’s nothing surprising about these results, which are really just an indication of the fact
that implementing security and integrity controls across the entire software supply chain is
an expensive and resource-intensive undertaking better suited to larger organizations.

Poor Assigned to respondents that have implemented a minimum of import, build
and run controls.

Average Assigned to respondents that have implemented many of the
import, build and run best practice controls.

Excellent Assigned to respondents that have implemented a majority of the
import, build and run best practice controls.

SMB MSB LE80%

60%

40%

20%

0%
Poor Average Excellent

48%

24%

66%

54%

23%
28%

11%

19%

28%

activestate.com/state-of-software-supply-chain-security/ Page 08

Software Supply Chain Security Rating
by Geographic Region

The one outlier is the fact that at least twice as many North American companies have
already achieved an “Excellent” supply chain security rating compared to other geographies.
However, more than 80% of North American organizations still lack a truly robust solution.

NA EU AP ROW

In general, the strength of an organization’s supply chain security is not geography dependent.
When it comes to implementing a secure supply chain, no region of the world is any further
ahead than another.

Average

Excellent

Poor

80%

60%

40%

20%

0%

Poor Average Excellent

60%

72%
68%

74%

23% 24% 24% 22%
17%

4%
8%

4%

North America European Union Asia Pacific

17%

23%

60%

4%

24%

72%

8%

24%

68%

4%

22%

74%

Rest of the World

activestate.com/state-of-software-supply-chain-security/ Page 09

Q2 - What best describes your
role/responsibilities?

It seems appropriate that the largest block of respondents were security
personnel who are primarily concerned with the integrity and security of
the software their organizations create and use. In ActiveState’s experience,
coders generally view security as secondary to their primary role of
completing their coding deliverables. However, their input here is key since
they are also the ones responsible for resolving issues found by their
security teams.

In contrast, open source advocates are generally responsible for
establishing policies and governance around the use of open source in their
organization, and would likely have input on security measures, as well.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coder

Security

Open Source

Other

32%

5%

19%

44%

32%
Coder

32% of respondents indicated that they were coders, which includes
titles such as Developer, Engineer, Programmer, IT, QA, DevOps, Ops, etc.

44%
Security

44% of respondents indicated that they were security personnel, which
includes titles like CISO, InfoSec, Cybersecurity and Security Analyst /
Engineer / Architect / Consultant, etc.

19%
Open Source

Advocate

19% of respondents indicated that they were open source advocates,
which includes titles like Open Source Officer, Program Office, Advocate,
Strategist, etc.

5%
Other

5% of respondents indicated that they held a different role, including
Product Manager, R&D/Engineering Manager, Support Manager,
Project Manager, SysAdmin, Technician, CEO/CIO/CTO and Student.

Coder Security Open Source Other

activestate.com/state-of-software-supply-chain-security/ Page 10

Read more about ActiveState Platform’s import controls

Roles by Organization Size

Open source advocates, by comparison, participated at a rate that reflected the size of
their company: the larger the organization, the greater the proportion of open source
advocates that participated in the survey. This is likely a reflection of the fact that larger
companies tend to put more of an emphasis on hiring for open source roles than smaller
ones.

100%

80%

60%

40%

20%

0%

SMB MSB LE

Given that in most organizations (regardless of size), there tend to be more coders than
security personnel, we expected to see more responses from those responsible for
writing code than evaluating the security of that code. While this held true for SMBs and
LEs, more than half of MSB respondents characterized their role as “Security.” This may
be an anomaly, or it may be an indication that, for MSBs at least, security is becoming
everyone’s responsibility. More followup is required.

5%

15%

19%

46%

2%

21%

58%

19%

11%

27%

24%

38%

activestate.com/state-of-software-supply-chain-security/ Page 11

Coder Security Open Source Other

Respondents were asked what kinds of controls they have in place to ensure against
importing compromised software. For instance, importing open source components from
public repositories poses a number of risks.

Import Controls

PART 2

Typosquatting Also known as brandjacking or cybersquatting, this is the
practice of attackers submitting a compromised package to
an open source repository that is named similar to a popular,
existing package.

While many public repositories have implemented 2-factor
authentication to help mitigate author account hijacking,
packages with no reviewers, or with fewer than two
reviewers should be treated as suspect. As should packages
that have new authors all of a sudden.

Author
Impersonation

Dependency Confusion can occur when a build system
mistakenly pulls in a similarly named dependency from a
public repository rather than your private repository.

Dependency
Confusion

Page 12activestate.com/state-of-software-supply-chain-security/ Page 12

The ActiveState Platform imports only source code from public
repositories like Python Package Index (PyPI), CPAN,
RubyGems, GitHub, among others. The code is vetted for
maintainability, security, and commercial use, and then loaded
into the ActiveState Platform catalog, ready to be automatically
built on demand. Developers can therefore be assured that the
code they use from the ActiveState Platform is far more secure
than working with prebuilt packages from public repositories.

Read more about the ActiveState Platform’s import controls >

Public repositories are just that: public, which means anyone can upload whatever code
they want. While most public repositories have implemented 2-factor authentication to
limit author impersonation, they have yet to verify and sign the code they offer. Thus, no
guarantees are offered as to whether prebuilt packages are malware-free.

To limit the risk of using public repositories, security-conscious organizations typically
implement a number of controls that might include verifying the author, maintainers, and
reviewers, as well as checking timestamps, and possibly even implementing a quarantine
zone for code that fails to pass.

activestate.com/state-of-software-supply-chain-security/ Page 13

https://www.activestate.com/blog/3-keys-to-securing-the-open-source-supply-chain/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

Q3 - How do you verify imported open source code?
Check all that apply.

Participants were asked about the import process they use to bring code
from external sources into their organization.

Of note is the fact that almost one-third of respondents continue
to implicitly trust public repositories, despite the growing
number of supply chain attacks targeting them. Surprisingly,
almost as many respondents trust public repositories as trust
their vendor, despite the disparity in the security of the
components they offer. However, the survey did not distinguish
between those that import prebuilt components from public
repositories versus those that import only source code. The risk
posed by importing source code is less compared to the risk of
importing prebuilt packages and/or precompiled binaries, which
can obfuscate malicious code.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Not Sure

Trust Repo

Trust Vendor

Verify Timestamp

Verify History

Verify URL

Verify Author

7%

32%

35%

41%

37%

33%

29%

activestate.com/state-of-software-supply-chain-security/ Page 14

https://blog.sonatype.com/2021-state-of-the-software-supply-chain?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc
https://blog.sonatype.com/2021-state-of-the-software-supply-chain?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

41%
Verify

Timestamp Verifying the timestamp is a simple way to check for anomalous
uploads.

41% of respondents indicated they verify the timestamp of the code
commit.

37%
Verify History

Checking the commit history of a component raises awareness around
change descriptions, contents of the change, and/or parent revisions.

37% of respondents indicated that they verify the change history of the
code they import.

33%
Verify URL

Recording the URL allows organizations to trace built artifacts back to
their original source. It can also help identify whether you have
inadvertently imported a compromised component subsequently
discovered by the community.

33% of respondents indicated that they verify the URL/immutable
reference to the original source of the code they import.

29%
Verify Autor

You should always check whether the code has been vetted by at
least two reviewers, and that the uploader and reviewer are two
different trusted persons.

29% of respondents indicated they verify the identity of uploaders and
reviewers.

32%
Trust Repo Implicitly trusting public repositories is risky, given that they provide no

guarantees as to the security and integrity of the components they offer.

32% of respondents indicated they implicitly trust public repositories
such as npm, PyPI, GitHub, etc.

35%
Trust Vendor

Trusting a vendor is far less risky than trusting a public repository, but
security-conscious organizations should still be prepared to trust but
verify.

35% of respondents indicated they implicitly trust their vendor's
ecosystem, such as Redhat, Anaconda, etc

activestate.com/state-of-software-supply-chain-security/ Page 15

https://www.activestate.com/resources/white-papers/establishing-software-supply-chain-trust/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc
https://www.activestate.com/resources/white-papers/establishing-software-supply-chain-trust/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

Trust by Organization Size

Here, it’s interesting to note that while SMBs and LEs tend to make more use of public
repositories, MSBs are at least 30% more likely than SMBs or LEs to rely on code from
their vendor’s ecosystem, such as ActiveState’s Perl or Anaconda’s Python, for example.

This result seems to correlate strongly with the fact that the majority of MSB respondents
are security professionals, who are more likely to put their trust in a proven vendor over a
public repository.

The fact the LEs are more likely to put their trust in public repositories than vendors is
indicative of the fact that they are the most likely group to import source code and build it
themselves, as we’ll see in the next section on Build Controls.

50%

40%

30%

20%

10%

0%

Implicity Trust Repo Implicity Trust Vendor

38%

23%

39%

33%

41%

29%

SMB MSB LE

activestate.com/state-of-software-supply-chain-security/ Page 16

Import Controls by Organization Size

Interestingly, both SMBs and LEs were fairly consistent in implementing the entire range
of code import best practices, whereas MSBs placed far more emphasis on verifying
timestamps than any other control.

In fact, a simple timestamp check was almost twice as likely to be implemented than the
more complex verification of uploader/reviewer identities.

60%

40%

20%

0%

SMB MSB LE

31% 32% 31%
27%

56%

45%

36%

29%

49%
45%

49%

43%

activestate.com/state-of-software-supply-chain-security/ Page 17

Verify Timestamp Verify Revision History Verify URL Verify Identity

Respondents were asked what kinds of controls they have in place to ensure the build
process for their software is secure. Supply chain attacks are on the rise, and the build
process is a key target. For example, infamous hacks like SolarWinds and Codecov were
attacks against their build environments.

PART 3

Build Controls

Malicious install scripts that pull in packages you don’t expect.

Unconstrained packages that do more than you expect.

Dynamic packages that include remote resources.

Without a secure build service, organizations can be exposed to a number of vectors of
attack, including:

Page 18activestate.com/state-of-software-supply-chain-security/ Page 18

https://blog.sonatype.com/2021-state-of-the-software-supply-chain?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc
https://www.computerweekly.com/news/252499587/Codecov-supply-chain-attack-has-echoes-of-SolarWinds?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

The ActiveState Platform’s secure build service implements
all of the above best practices to ensure the integrity of
artifacts built on demand from source code haven’t been
compromised. The output is a verifiably reproducible build,
where not only do the same inputs produce the same outputs
every time, but whose provenance can also be verified by
tracing each component back to its original source.

To counter these kinds of attacks, organizations should implement a number of best
practices:

Secure Build Service
A dedicated service that runs on a minimal set of predefined, locked down resources
rather than a developer’s desktop or other arbitrary system that can offer a larger attack
surface to hackers.

Scripted Builds
Predefined build scripts that cannot be accessed and modified within the build service,
preventing exploits.

Ephemeral, Isolated Build Steps
Every step in a build process should execute in it’s own container/VM, which is discarded
at the completion of each step. In other words, containers/VMs are purpose-built to
perform a single function, reducing the potential for compromise.

Hermetic Environments
Containers/VMs have no internet access, preventing (for example) dynamic packages
from including remote resources.

Read how the ActiveState Platform can secure your builds >

activestate.com/state-of-software-supply-chain-security/ Page 19

https://www.activestate.com/resources/datasheets/activestate-platforms-secure-build-service/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

Q4 - Do you build the open source packages you use
from source code?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Not Sure

Never

Most

Some

Everything

5%

30%

24%

28%

13%

5%
Not sure

5% of respondents were unsure whether they build open source
packages from source code.

13%
Never

13% of respondents indicated that they only work with prebuilt binaries,
obtained from either public repositories or else vendors.
While working with prebuilt components is faster and easier than building
from source, it can potentially expose organizations to undue risk.

28%
Most

28% of respondents indicated that they build most of the open source
packages they use from source code.

30%
Some

In ActiveState’s experience, when organizations report building “some
components from source” they are generally referring to OpenSSL, which
frequently requires patching/updating to ensure the network
communications of the software you build remain secure.

30% of respondents indicated that they build at least some packages
from source code.

24%
Everything

24% of respondents indicated that they build everything from source code.

The best practice of building all software components used in the
development process from source code is not as widespread as it
should be. As supply chain attacks increase, whether you build some or
most components from source code, you are still introducing undue risk
into your organization by working with prebuilt components.

activestate.com/state-of-software-supply-chain-security/ Page 20

Building From Source Code By Organization Size

Unsurprisingly, SMBs are the least likely to spend their limited resources to build the open
source packages they use from source code, while LEs are most likely to always build
everything from source.

40%

20%

0%

Not Sure Never MostlySometimes Always

SMB MSB LE

The general trend is in the right direction:
80% or more of respondents, no matter the size of their organization, build at least some
components from source.

5%
1%

6%

18%

6%

15%

26%

36%

26%
28%

32%

18%
22%

25%

35%

activestate.com/state-of-software-supply-chain-security/ Page 21

Q5 - How do you ensure open source builds are secure?
Check all that apply.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Scripted Builds

Secure Service

Ephemeral

Isolated

Hermetically Sealed

Reproducible

34%

45%

52%

47%

30%

22%

34%
Scripted

Builds
The less need for manual input, the fewer points of potential compromise.

34% of respondents indicated that their builds are defined by a build
script (i.e., builds do not require manual inputs).

45%
Secure
Service

Build services executed on a locked down system that runs only those
services required to fulfill the build reduces the potential attack surface.

45% of respondents indicated that their builds are run using a dedicated
build service that is not on a developer's workstation.

52%
Ephemeral Extracting the output of the step and discarding the container/VM in which

it was built ensures environments don’t become polluted through reuse.

52% of respondents indicated that each of their build steps are executed
in ephemeral environments (i.e., once the build step is complete, the
environment is discarded).

47%
Isolated By isolating each build-step container/VM, you can ensure that each build is

free from influence by other build instances.

47% of respondents indicated that each of their build steps are executed
in isolated environments (i.e., each build step executes independently).

Continued on next page...

activestate.com/state-of-software-supply-chain-security/ Page 22

30%
Hermetically

Sealed

All dependencies should be available locally via an immutable reference.
Eliminating public network access to a container/VM eliminates the
possibility of including remote resources, as may happen in cases of
dependency confusion.

30% of respondents indicated that their build steps are executed in
hermetically sealed environments (i.e., environments that have no
public network access).

22%
Reproducible

Simply put, the same “bits” input should result in the same “bits” output. If
they don’t, there is no guarantee the artifacts you’re working with haven’t
changed from build to build.

22% of respondents indicated that their builds are reproducible.

While most respondents agree on the use of ephemeral environments, such as
containers or VMs in which to run their builds, there is less consensus around how
isolated or sealed off those environments need to be, let alone where or even how much
manual intervention is required to run a build.

Only 22% of respondents are capable of creating reproducible builds.

The implication is that their organizations are unable to verify that the source code was
unaltered when the original build was produced.

As a result, these organizations could be using compromised code and never know it
until they (or their customers) get hacked.

...continued from previous page

activestate.com/state-of-software-supply-chain-security/ Page 23

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

Build Controls By Organization Size

Compared to SMBs and MSBs, LEs are far more consistent about implementing a wide
range of best practices when it comes to building securely from source code.

In ActiveState’s experience, security-conscious LEs place a strong emphasis on
reproducible builds, often creating dedicated, experienced build teams that centrally
supply all the runtime environments required by the enterprise’s numerous projects.
However, with less than half of LE respondents supporting reproducible builds, even the
largest organizations still have a long way to go to secure their supply chain.

And when it comes to reproducible builds, LEs are more than twice as likely to implement
them.

80%

60%

40%

20%

0%

Not Sure Never MostlySometimes Always Always

35%

29%

43% 43%
47%

45%
41%

65%

51%

41%

52% 53%

26%

31%

47%

20%
17%

45%

SMB MSB LE

activestate.com/state-of-software-supply-chain-security/ Page 24

Respondents were asked what kinds of controls they have in place to ensure the
components they develop their software with are secure. Traditionally, cyberattacks have
focused on software being run in production environments, which is where most
organizations place their greatest security emphasis. But bad actors have become wise
to this strategy, and are now targeting less secure environments where software is run,
such as CI/CD pipelines or even dev environments.

But if you’ve done your homework to ensure the security and integrity of your import and
build processes, running code in development, test and even production environments
should also be secure.

Run Controls

The best way to ensure the security of the components you run is to ensure they’re signed
either by your own organization or a trusted third party. Code signing has been around for
decades, and is widely considered a best practice to ensure that code:

 Was created by the signing entity (typically, the
 author of the software).

 Has not been altered or corrupted since the code
 was signed.

PART 4

activestate.com/state-of-software-supply-chain-security/ Page 25

But the real value of signed code is the establishment of trust. Trusted software vendors
are an essential ingredient in creating effective cybersecurity at any security conscious
organization.

The technique of digital signing is a best practice that lets downstream consumers have
confidence that the signed software originated with a trusted vendor, and that it hasn’t
been tampered with.

See how easy it is to shift security left with the ActiveState Platform >

Are always working with verified packages that have been
built by ActiveState from source code, rather than installing
pre-built, public binaries.

Are working with a Python, Perl or Tcl-based development
environment whose vulnerability status is always known, and
who are empowered to simply point-and-click to
automatically rebuild a secure version of their environment.

While the ActiveState Platform doesn’t yet sign the packages it
automatically builds from source code (coming soon!), it does
verify all checksums internally so you can be confident your
developers:

activestate.com/state-of-software-supply-chain-security/ Page 26

https://www.activestate.com/blog/how-to-remediate-your-open-source-vulnerabilities-quicker/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc
https://www.activestate.com/resources/datasheets/shifting-security-left-devsecops/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

More than 80% of respondents work with at least some signed packages.

However, as the SolarWinds hack proved, signing is no guarantee that the software
hasn’t been compromised prior to the signing service.

Q6 - Do you work with signed packages?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Not Sure

All

Most

Some

No

14%

5%

31%

43%

7%

7%
Not Sure

7% of respondents were unsure whether they were working with signed
packages.

31%
Most

31% of respondents indicated that the majority of packages they work with
are signed by a trusted entity.

14%
Some

14% of respondents indicated that they work with at least some signed
packages.

5%
No

5% of respondents indicated that they never use signed packages.

43%
All

43% of respondents indicated that they only work with signed packages.
Working with packages signed by a secure, internal build service, or else a
trusted vendor is the best way to ensure components haven’t been tampered
with.

activestate.com/state-of-software-supply-chain-security/ Page 27

https://whatis.techtarget.com/feature/SolarWinds-hack-explained-Everything-you-need-to-know?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

Q7 - Does the signature include the following information
via a cryptographic hash? Check all that apply.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Output Artifact

Build System

Source

Transitive Dependencies

Build Parametres 25%

55%

36%

61%

31%

31%
Output

Artifact
Like the other information in a signature, the artifact is typically identified by a
SHA-256 cryptographic hash.

31% of respondents indicated that the signature identifies the built
component.

55%
Build

System
This is the entity that performed the build, and may be a CI/CD system or just
a user’s machine.

55% of respondents indicated that the signature identifies the build system
used to create the component.

61%
Source This is typically a link to the build script in a version control system.

61% of respondents indicated that the signature contained an immutable
reference to at least the build script.

Digital signatures should be generated from a private key accessible only to the build
service. Digital signatures can be used to attest to the authenticity and integrity of the
signed component in a number of ways, ensuring that it has not been compromised.

Continued on next page...

activestate.com/state-of-software-supply-chain-security/ Page 28

Surprisingly few participants indicated that the digital signature identified the output
artifact. This is a “table stakes'' item that should be included to ensure built components
are properly identifiable.

On the other hand, the lower results for build parameters and transitive dependencies are
expected, as they are typically seen as advanced requirements.

36%
Transitive

Dependencies
Transitive dependencies are dependencies of dependencies, and can
shift over time as top-level dependencies evolve.

36% of respondents indicated that the signature provided
provenance (i.e., the source) for all transitive dependencies.

25%
Build

Parameters
Some components offer a number of user-controlled parameters or
switches that can dramatically affect the functionality and/or
performance of the component.

25% of respondents indicated that the signature identifies the build
parameters (if any) with which the artifact was created.

...continued from previous page

activestate.com/state-of-software-supply-chain-security/ Page 29

The security of the software supply chain has largely been ignored to date.
Organizations have been distracted by ransomware and primarily focused on
vulnerabilities. As a result, they have largely ignored the security and integrity of their
software development processes.

Key Takeaways

Supply Chain Security Immaturity
Implementation of best practice controls to ensure the security and integrity of
software development processes does not match the growing supply chain
threat. Much more work needs to be done in 2022 to ensure software
development organizations and their downstream customers can credibly avoid
being compromised by bad actors.

Build Reproducibility
For those organizations that build components from source, by far and away the
most worrying result from our 2021 survey is the lack of reproducible builds.
Without reproducibility, no built artifact can be deemed secure. This should be a
top priority for software development organizations in 2022.

Public Repository Trust
Open source organizations are making great strides to improve the security of
their public repositories, but the reality is that they are still the wild west where
anything goes. Unfortunately, survey results indicate that a worryingly high
proportion of organizations continue to implicitly trust open source
repositories. Organizations that work with public repositories should focus on
implementing robust import controls in 2022.

1.

2.

3.

activestate.com/state-of-software-supply-chain-security/ Page 30

A comprehensive Software Bill Of Materials (SBOM) for each of your projects.

A Secure Build Service that not only creates reproducible builds, but also provides
provenance for all built components.

Software Integrity that ensures your existing import, build and run processes haven’t
been compromised.

Automated Vulnerability Remediation that not only identifies vulnerabilities, but also
allows developers to resolve them in minutes, not days.

The ActiveState Platform can help organizations secure their software supply chain by
providing a turnkey secure supply chain for open source languages like Python, Perl,
Ruby, and Tcl. It implements many of the key import, build and run controls discussed in
this Survey, as well as features isted below.

The Activestate Platform can help ensure the integrity and
security of the open source software organizations use to
develop their digital products and services.

Try the ActiveState Platform yourself by getting started for
free. Or let us show you just how quick and easy it can be to
secure your software supply chain.

Get a Demo

For more survey-related updates and the latest softwares supply chain security
resources, head to:

activestate.com/software-supply-chain-security/

activestate.com/state-of-software-supply-chain-security/ Page 31activestate.com/state-of-software-supply-chain-security/ Page 31

https://www.activestate.com/solutions/software-supply-chain-security-resources/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc
https://www.activestate.com/get-demo/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

ActiveState helps enterprises manage the complexity and risk of using open source
languages at scale, while giving developers the kinds of tools they love to use. More than
2 million developers and 97% of Fortune 1000 enterprises use ActiveState to support
mission-critical systems and speed up software development while enhancing oversight
and increasing quality.

About ActiveState

www.activestate.com

Toll-free in NA: 1-866.631.4581

solutions@activestate.com

©2021 ActiveState Software Inc. All rights
reserved. ActiveState®, ActivePerl®,
ActiveTcl®, ActivePython®, Komodo®,
ActiveGo™, ActiveRuby™, ActiveNode™,
ActiveLua™, and The Open Source Languages
Company™ are all trademarks of ActiveState.

@ActiveState /activestate www.activestate.com

activestate.com/state-of-software-supply-chain-security/ Page 32

https://twitter.com/ActiveState?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc
https://www.linkedin.com/company/activestate/?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc
https://www.activestate.com?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc
https://www.activestate.com?utm_source=referral&utm_medium=inbound&utm_content=security-survey-report-2021&utm_campaign=3sc

