
re Module Functions

Read the documentation here:
https://docs.python.org/3/library/re.html

Need more help?

A RegEx, or Regular Expression, is a sequence of characters that forms a search pattern. They’re
typically used to find a sequence of characters within a string so you can extract and manipulate them.
For example, the following returns both instances of ‘active’:

import re

pattern = 'ac..ve'

test_string = 'my activestate platform account is now active'

result = re.findall(pattern, test_string)

Python RegEx Cheatsheet with Examples

Quantifiers

match m to n occurrences,
but as few as possible (eg., py{1,3}?){m,n}

match m to infinite occurrences
(eg., py{3,}){m,}

match from 0 to n occurrences
(eg., py{,3}){,n}

match from m to n occurrences
(eg., py{1,3}){m,n}

match exactly m occurrences
(eg., py{3}){m}

match 0 or 1 occurrences
(eg., py?)

?

match 1 or more occurrences
(eg., py+)

+

match 0 or more occurrences
(eg., py*)

*

Special characters
.

^

$

[3a-c]

[^x-z1]
A|S
()

\

match any char except newline

(eg., ac..ve)

match at beginning of string

(eg., ^active)

match at end of string

(eg, state$)

match any char

(ie., 3 or a or b or c)

match any char except x, y, z or 1

match either A or S regex

capture & match a group of chars

(eg., (8097ba))

escape special characters

match occurrence only at start of string

match occurrence only at end of string

match empty string at word boundary (e.g.,

between \w and \W)

match empty string not at word boundary

match a digit

match a non-digit

match any whitespace char: [\t\n\r\f\v]

match any non-whitespace char

match any alphanumeric: [0-9a-zA-Z_]

match any non-alphanumeric

matches a previously captured group

match expression represented by A

(non-capture group)

match expression A only if followed by B

match expression A only if not followed by

B

match expression A only if it follows B

match expression A only if not preceded by

B

where a, i, L, m, s, u, and x are flags:

Special sequences
\A
\Z

\b
\B
\d
\D
\s
\S
\w
\W

\g<id>
(?:A)

A(?=B)
A(?!B)

(?<=B)A

(?<!B)A
(?aiLmsux)

match ASCII only

make matches ignore case

make matches locale dependent

multi-line makes ^ and $ match at the

beginning/end of each line, respectively

makes ‘.’ match any char including newline

match unicode only

verbose increases legibility by allowing

comments & ignoring most whitespace

a =
i =
L =
m =

s =
u =
x =

Besides enabling the above functionality, the ‘re’ module also features a number of popular functions:

re.findall(A, B) match all occurrences of expression A in string B

re.search(A, B) match the first occurrence of expression A in string B

re.split(A, B) split string B into a list using the delimiter A

re.sub(A, B, C) replace A with B in string C

www.activestate.com

RegExes are extremely useful, but the syntax can be hard to recall. With that in mind, ActiveState offers
this “cheatsheet” to help point you in the right direction when building RegExes in Python.

