
ActiveState “State Tool” Webinar

The Secret to Managing
Shared Secrets

Welcome

The Secret to Managing Shared
Secrets

Pete Garcin
Senior Product Manager
ActiveState (@rawktron)

Dana Crane
Product Marketing
Manager, ActiveState

Housekeeping

● Webinar recording and slides will be available shortly

● Share questions with panelists using the Question panel

● Q&A session following presentations

The Secret to Managing Shared
Secrets

About ActiveState

The Secret to Managing Shared
Secrets

● Track-record: 97% of Fortune 1000, 20+ years open source

● Polyglot: 5 languages - Python, Perl, Tcl, Go, Ruby

● Runtime Focus: concept to development to production

About ActiveState Platform

The Secret to Managing Shared
Secrets

● Runtimes: automatically builds runtime environments in
minutes

● Dependency Management: automatically pulls in & resolves all
dependencies

● Multilingual; Multiplatform: automatically packages Python &
Perl runtimes for Windows & Linux

Overview

The Secret to Managing Shared
Secrets

● Activating a Project
● Project Configuration
● Constants & Secrets
● Scripts & Events
● Real World: Project Setup
● Q&A

ActiveState Platform

The Secret to Managing Shared
Secrets

What if we could reduce your entire
development environment setup to a

single command?

ActiveState Platform

The Secret to Managing Shared
Secrets

● Sign up now for an account and to download the
state tool:
○ https://platform.activestate.com

State Tool
The Secret to Managing Shared

Secrets

Installing the State Tool

The Secret to Managing Shared
Secrets

● Currently the public release of the state tool only supports
Linux & Windows. macOS support will follow in the not so
distant future.

● To install the State tool simply run the following one liner
from your command prompt:

sh <(curl -q https://platform.activestate.com/dl/cli/install.sh)

powershell "IEX(New-Object Net.WebClient).downloadString('https://platform.activestate.com/dl/cli/install.ps1')"

The Platform

1) Go back to the platform

2) Click the “copy” button

3) Go back to the Command Prompt

4) CTRL-V/Right click to paste

The Secret to Managing Shared
Secrets

Authenticating

The Secret to Managing Shared
Secrets

● The state tool prompt you to enter your username and
password automatically if you’re not already authenticated.

● However, if you ever need to manually authenticate, run
the following command to authenticate your CLI:

● You will be prompted for your username and password,
and if all goes well it should show a friendly “You have
authenticated” message.

state auth

Activating your Project

The Secret to Managing Shared
Secrets

● Now, we simply activate our project with the following
command:

● Owner can be either username or organization name. For
instance, if you created your project inside an organization,
then use the organization name instead of your username.

state activate owner/projectName

ActiveState Platform

The Secret to Managing Shared
Secrets

● That’s it! One line has:
○ Created a virtual environment for your project
○ Installed the Python runtime and all your defined

project dependencies
○ As we’ll see, it can also run subsequent commands,

configuration and setup.
○ The ActiveState platform will keep all your

dependencies updated and current if you’ve set them
up that way.

Managing Secrets and Project
Config

The Secret to Managing Shared
Secrets

● The state tool doesn’t just do runtime environment
management, but also lets you set up your development
environment, automate workflows and share secrets with
your team.

Project Configuration

The Secret to Managing Shared
Secrets

● Inside your repo, you configure your project using the
activestate.yaml file.

● Inside this file you can define:
○ Your project URL that tells the platform what runtime

to use
○ Constants -- values that you wish to use in scripts
○ Scripts -- scripts written in a language of your choice

that help automate your workflow

Static Values (Constants)

The Secret to Managing Shared
Secrets

● Let’s start with the simplest: Defining static values. Open
up the activestate.yaml file that was created under your
project directory. Let’s define a simple constant:

constants:

 - name: LOCATION

 value: World

Static Values

The Secret to Managing Shared
Secrets

● You now have a constant defined that you can use
throughout your config.

● Let’s try actually using it though, add another constant:

 - name: HELLO

 value: Hello $constants.LOCATION

Secrets

The Secret to Managing Shared
Secrets

● You probably have a bunch of shared credentials, API Keys,
etc. how are you storing these?
○ Wiki?
○ External tool like vault, etc.?
○ Slack/Email?
○ 1Password/LastPass?
○ GitHub!? *gasp*

Managing Secrets & Project Config

The Secret to Managing Shared
Secrets

● Secrets have the concept of scopes -- which allow you to automatically share
them amongst all members of the scope.

● For example, if you set a secret to have project level scope, everyone within
that project will have access to that secret.

● Compare that to a user level secret, where only you have access to the value
of that secret.
○ Other users will still have access to the secret name -- but will set their

own value for that user-level secret

Defining Secrets

The Secret to Managing Shared
Secrets

● For now, we define secrets using the tool and not in the
activestate.yaml.

● In the future you will be able to define secrets in the
activestate.yaml file as well.

state secrets set project.secretname value

Defining Secrets

The Secret to Managing Shared
Secrets

● To create a secret value that only you have access to:

● Reminder: This will still define the secret for everyone on the project, but
only you will have access to the value you’ve set. Anyone else that uses this
secret will be prompted for their own value.

state secrets set user.LOCATION value

Defining Secrets

The Secret to Managing Shared
Secrets

Retrieving Secrets

The Secret to Managing Shared
Secrets

● ..or if you want to use it in your activestate.yaml

constants:

 - name: HELLO

 value: Hello $secrets.user.LOCATION

state secrets get user.LOCATION

Automating Workflows: Scripts

The Secret to Managing Shared
Secrets

● The real power of the state tool starts to become apparent
when you leverage it to automate configuration and
workflows.

scripts:

 - name: simpleHello

 value: echo This is a simple Hello World script.

Scripts: Using Constants & Secrets

The Secret to Managing Shared
Secrets

● Scripts can also use constants, so we can embed one of our
earlier constants:

● This will work for any type of field, including secrets.

 value: echo $constants.HELLO

Scripts: Nesting Scripts

The Secret to Managing Shared
Secrets

● It gets more interesting though, because in the
activestate.yaml EVERYTHING can be used as a variable, so
you could create another script that references our first
script:

scripts:

 - name: log-hello

 value: $scripts.hello > /tmp/hello.txt

Scripts: Arguments

The Secret to Managing Shared
Secrets

● You can also forward any arguments from command line
invocation to your scripts to make them even more flexible.
So in this case, if we execute `state run arg-hello World`
with the below script defined, our output will be: “Hello
World”

scripts:

 - name: arg-hello

 value: echo Hello $1

Automating Config: Events

The Secret to Managing Shared
Secrets

● Events act mostly the same as scripts do, except that they aren’t manually
invoked and instead run when their event triggers. For example we could
have an ACTIVATE event that looks like this:

● This would start a service whenever we enter an “activated state”. It’s worth
noting that the ACTIVATE event has a special use-case: it is invoked as part of
your bashrc (or zshrc, or fishrc, or ..) meaning it can export environment
variables, register bash aliases, etc.

events:

 - name: ACTIVATE

 value: systemctl start my-service

Real World: Project Setup

The Secret to Managing Shared
Secrets

● Let’s take a look at setting up a real world -- existing project
for use with the state tool.

● We’ll use the state tool to:
○ Install the dependencies and runtime environment

required to run our project, and create a virtual
environment for our existing project.

Real World: Project Setup

The Secret to Managing Shared
Secrets

git clone https://github.com/ActiveState/tensorflask

cd tensorflask

state activate

https://github.com/ActiveState/tensorflask

Q & A

Thank you to our panelist

Making Machine
Learning AccessibleThe Secret to Managing Shared

Secrets

Pete Garcin, Senior Product Manager, ActiveState (@rawktron)

What’s Next

● Try the State Tool & ActiveState Platform
https://platform.activestate.com

https://platform.activestate.com

Tel: 1.866.631.4581

Website: www.activestate.com

Twitter: @activestate

Facebook: /activestatesoftware

Where to find us

http://www.activestate.com

