
THE
POLYGLOT

ENTERPRISE

BEST
PRACTICES

FOR ADDING
A NEW

LANGUAGE

 | The Polyglot Enterprise 1

THE POLYGLOT ENTERPRISE

BEST PRACTICES FOR ADDING A NEW LANGUAGE

Polyglot is now the norm in most enterprises. The power shift toward
developers - those that create the Intellectual Property that differentiates
your business - coupled with the technology shift toward services/
microservices has resulted in polyglot: the proliferation of programming
languages and technology stacks across the enterprise.

For example, a recent study1 examined the data from Kaggle’s 2018
Machine Learning and Data Science survey2, which collected more than
23,000 responses from professionals, including their use of 16 different
programming languages. The study’s analysis of the data revealed
which programming languages tend to be used together, such as:

Python, Bash, Scala
R, SQL, Visual Basic/VBA, SAS/STATA
Java, Javascript/Typescript, C#/.NET, PHP
C/C++, MATLAB
Julia, Go, Ruby

1 http://customerthink.com/usage-driven-groupings-of-data-science-and-machine-learning-programming-languages/
2 https://www.kaggle.com/kaggle/kaggle-survey-2018

2 The Polyglot Enterprise |

THE POLYGLOT ENTERPRISE

However, as most professionals will attest, adding a new language to
the enterprise is not a trivial matter. In fact, 67% of respondents that
ActiveState polled for our 2018 Developer Survey said they would choose
not to add a new language because of the difficulties, which include:

Education. All of your developer, DevOps and other teams
that touch code will need to learn a completely new language,
as well as any new tooling that language entails.

Tooling. From IDEs to testing top packaging, depending
on what you’re already using, you may need to either
extend or entirely replace your toolchain.

Workflow/Processes. Some languages are more flexible than
others, and may well fit within your existing Software Development
Lifecycle (SDLC). Others may require you to make extensive changes.

ActiveState has been build engineering open source languages for
more than 20 years. We’ve seen what it takes to introduce, adopt
and become proficient with a new language. The following are
some best practices any software development team should keep
in mind in order to lessen the pain of adopting new languages.

 | The Polyglot Enterprise 3

THE POLYGLOT ENTERPRISE

Learning the syntax of a new language is tedious, but straightforward.
The hard part is learning how to use a language properly, as well as
understanding which libraries/frameworks are available and when
they should be called. In all cases, keep in mind the following tips:

Formal classroom training is usually not sufficient.
Start with a small project doing pair programming

(employee + consultant) in order to train your trainers,
which can they be paired with other employees.

Find a good linter for the new language (preferably
one that’s integrated with your IDE) in order to

enforce good coding styles and standards, as well as
ensure developers avoid common bugs and pitfalls.
Start by building shared libraries. After all, you’re new
to the language, but not new to the business.

Make sure there’s a large and active community contributing
to the language since it will make it easier to find code

examples, libraries and ensure those libraries are well supported.

Implement open source governance by implementing tools
that will help you track security vulnerabilities/CVEs, identify

which licenses can and cannot be used in your corporation, and
white/black list those libraries that don’t fit your company’s policies.

BEST PRACTICES FOR DEVELOPERS

4 The Polyglot Enterprise |

THE POLYGLOT ENTERPRISE

While developers tend to work with a single language/technology
stack per project, DevOps typically work in polyglot environments
that feature multiple tech stacks located locally, in the cloud, and/
or bridging the two via hybrid cloud implementations. All of which
means that any new language introduced will have a cascading
effect as it becomes more entrenched in the organization and
proliferates across environments. Some things to keep in mind:

Don’t treat the new language as a special, one-off case.
Rather, as much as possible, strive to make it fit within

your existing best practices (i.e., an automated CI/CD chain and
infrastructure as code with version-controlled configuration).

Making the new language fit your existing processes doesn’t
necessarily mean using the same tooling/infrastructure. Some of

your existing tooling/infrastructure will readily accommodate the new
language (with the benefit that there’s no need to learn new tooling).
However, for other tools, the new language will be a stretch. In these
cases, we’d recommend going with dedicated tooling for the the speed,
community support and (likely) more frequent updates they offer.

When it comes to deploying, implementing and configuring
the required tooling/infrastructure consider hiring a

consultant so you can not only get it right the first time, but also
understand the best ways to incrementally improve key metrics
(faster build/test/deploy times, reducing # of failures, etc).

Evaluate existing monitoring tools to understand whether
they can accommodate the new services/applications being

built, or whether dedicated monitoring tools are necessary.

BEST PRACTICES FOR DEVOPS

 | The Polyglot Enterprise 5

THE POLYGLOT ENTERPRISE

It may seem like obvious advice, but ensure everyone standardizes on
the same open source language distribution/version in order to minimize
inconsistencies across your team. Otherwise, you run the risk of differently
configured development environments, which are a key culprit in build failures.
When it comes to language distributions, you have three choices:

Community distributions are free and ubiquitous, and
probably came with your operating system. They’re a great
way to get started learning the basics, but are limited by the
fact that they don’t include popular community libraries.

Commercial distributions are vendor-supported archives that
include the core language plus many of the most popular
community-created libraries. These distros can be a good choice
for exploring both the language and its ecosystem, and certainly

ActiveState has a long history of offering some of the most popular,
commercial open source distributions for Python, Perl, Tcl, Go and Ruby.

Do-It-Yourself distributions are the best way to create a
development environment that requires a specific set of
languages, libraries and tools, but can be far too complex
when you’re just starting out with a new language.

THE LANGUAGE DISTRIBUTION

2
3

1

6 The Polyglot Enterprise |

THE POLYGLOT ENTERPRISE

SEE PREVIEW AT
https://www.activestate.com/products/platform/

THE FUTURE - POLYGLOT WON’T KILL THE ENTERPRISE

Polyglot is now the norm. As more
enterprises increase their use of
polyglot projects the associated
burden of managing them.
Eliminating the complexities
of managing dependencies,
reducing the build engineering
and environment setup time of
new languages, and automatically
updating libraries as vulnerabilities
are found will become business
critical. These are some of the key
problems that the ActiveState
Platform has been designed to solve.

The Platform will automate the building, certifying and resolving of open
source languages for any language distribution -- even distributions that
include multiple languages. As a result, developers can dedicate time to
high-value work, and enterprises can accurately gauge risk, knowing what
packages are running in which environments, and what their threat level is.

website: www.activestate.com | Toll-free in NA: 1.866.631.4581 | email: solutions@activestate.com

ABOUT ACTIVESTATE
ActiveState helps enterprises scale securely with open source languages and gives developers the kinds of tools they love to use.

More than two million developers and 97% of Fortune 1000 companies use ActiveState open source language builds including CA, Cisco, Pepsi, Lockheed Martin and NASA. To learn more, visit activestate.com

Eliminate dependency conflicts and
save time with a standard open source

language build.

Contact us to find out why 97% of

Fortune 1000 use our software:

solutions@activestate.com

