ActiveState

Adding a Programming
Language

ActiveState Webinar

ActiveState

Adding a Language

Panelists

Francois Ouellet, Director of Development Practice,

Manulife
George Williams, Director of Data Science and Chief

Evangelist, GSI Technology

State’

Adding a Language

Housekeeping

e \Webinar recording and slides will be available shortly
e Share questions with panelists using the Question panel

e QA&A session following presentations

State’

Adding a Language

Capita/lonel' Bankof America %% HSBC <> TESCO Bank CREDIT SUSSE\
BOMBARDIER GE Aviation P — @’ SIEMENS I
‘ o —
(intel') T=25 % Microsoft Hewlett Packard verizon’
technologies —_ == nterprise

Track-record: 97% of Fortune 1000, 20+ years open source
Polyglot: 5 languages - Python, Perl, Tcl, Go, Ruby

Runtime Focus: concept to development to production

State

ActiveState

Adding a Programming Language

Galns vs Pains

Adding a Language

Software Development Challenges

| 5 (Very Difficult) w4 |3 E2 ¥ 1 (Not Difficult)

Adding a Language
Dependencies

Environmental Configuration E%5 16%

Reproducible Builds

Source: ActiveState Developer Survey 2018, Open Source Runtime Pains

ActiveState

Adding a Language

What's so Difficult?

e Education - learn the new language & its tooling
e Tooling - extend or replace your toolchain

e Workflow/Processes - update your software development lifecycle

State

Adding a Language

Education Resources

Learn at your own Pace:
e Paid Classes: lynda.com, Codecademy, Code School, Udemy, etc

e Free Resources: Code Camp, Edx, MIT Open Courseware, etc

Learn from Peers:

e |earnone; doone; teach one

State’

Adding a Language

Tooling

Gains:

Polyglot IDEs

Source code repositories like Git
Binary repositories like Nexus
Flexible code quality tools like
SonarQube

Popular automated testing tools like

Selenium

Pains:

State

Unit/ integration/ functional testing
tools
Language-specific build tools

Polyglot IDEs vs dedicated IDEs

Adding a Language

Workflow/ Processes

Considerations:
e Builds of Compiled vs Interpreted languages

o eg.,Java + Maven vs Python + individual packages
e Quality of Statically- vs Dynamically-typed languages

o eg., C/C++ maturity vs JavaScript's novelty (O days since last new

framework)

State

Adding a Language

Language Distributions

Adopt a standard distribution:
e Community - free and ubiquitous (probably came with your OS)
o Creat way to get started learning the basics
e Commercial - vendor-supported; includes popular, third-party libraries
o Best for exploring the language and its ecosystem
e Do-It-Yourself - don't!

o Toocomplex when you're just starting out

State

Adding a Language

Introducing a New Programming Language
Challenges & Lessons Learned

Francois Ouellet

Director, Development
Practice, Canadian Division

Manulife

M Manulife

Adding a Language

Developers Perspective — The Challenges

= Learning a new programming
language syntax usually takes only a
few days. That's the easy part!

= What's more difficult is to learn:
* How to use the language properly?

= Which libraries/frameworks are
available and which one(s) should we
leverage?

M Manulife

Adding a Language

Developers Perspective — The Solutions

= Formal classroom training is usually
not sufficient

= Start with a small project team doing
pair programming with a mix of
permanent employees and external
experts/consultants.

= Once you have a few internal
experts, pair them with other
employees.

= Don't forget to include a few
production support developers in
your project team. They will need to
understand and support/fix that code
when it goes in production!

M Manulife

Adding a Language

Developers Perspective — The Solutions

= Make sure there’s at least one good
linter for the new programming
language and use it:

= Great tool to help avoiding some of
the common bugs and pitfalls

* It's a great time to enforce a coding
standard and style

= |t's even better if the linter is
integrated in your developers IDE
and perform on-the-fly code review

= You are new to the language but not
to the business that you are building
software for

= Great opportunity to start building
some shared libraries from day one

é..ﬁ_;.{-?(. ES P Ger

ekt v B
CRA LTI o 1410 = ot R ne) gt Tt (g e)

o AN /2, ot
..qum» x o

D),

oo GMY0 » Comtumayiier gok

marsTelrs yeu SSRERIINL 2t
S d (3 Mgt i g s b P st i i e

S A Nt L L | e A (b 4 LT), G A A
13

semecia vt s

£ (5tring @asciantonld © gemeretmehosoci stiotign mml

B e = gracenincoh Lok grisiads e
el e et it omerinst ool RO

..... PRT R e S

?
)

Fretectvd dotin ovdlimBistenieCoiinh s, midlelnk printD) ¢
e e vaze Sratiien 448

M Manulife

Adding a Language

Developers Perspective — The Solutions

= Make sure there is a large and active
community of people using that
programming language in the
industry:

® Google is your developers’ best friend
when they are looking for information
and answers

* The more people use a language the
more likely you are to find a lot of
code examples or open-source
libraries the will help accelerate the
work of your project teams.

M Manulife

Adding a Language

Developers Perspective — The Solutions

= Implement proper (and automated) Sonatype
open-source governance:

® There are many tools on the market X u S
that will help you assess:

= The security vulnerabilities for each
library/version (CVE databases)

= |f you can/should use a given library
based on its license agreement type

= |f there are “enough” people still
contributing to a library

® You can control which open-source
libraries can be used:

= by white/black listing

|©

= based on their characteristics (Must
not be affected by a security

| bility, i t li d und
\cl;uprl'lfl’-a“)l ity, is not licensed under]Frog xray

M Manulife

Adding a Language

Operations Perspective - Challenges

= What do we need to introduce in our
infrastructure to support that new
programming language?
= JVM
= Net Framework
= V8 engine

= How do we configure that properly?
= Memory
= Disk

= How do we monitor an application

written in that new programming
language?

M Manulife

Adding a Language

Operations Perspective - Solutions

= Follow at least some of the DevOps
principles:

® Implement Continuous Integration(Cl)
and Continuous Delivery (CD)

® Implement proper monitoring

= Make sure you have automated
functional and performance testing

= Use Infrastructure as Code (l1aC) and
version control how to configure the
platform/environment properly.
Makes it possible to:

= experiment and see the effect of any
changes to the platform configuration

= reapply the same configuration to
other environments (UAT, Staging
and Production)

M Manulife

Adding a Language

Thank you

M Manulife

P

CNIDLDGY

Who Am |?

Director, GSI Technology
Previously, Chief Data Scientist
Senior Data Scientist
Al Research Scientist

Software Engineer

High Performance Memories & Associative Computing

Framework GitHub Star Count

16191
15690

High Performance Memories & Associative Computing

Jupyter notebooks
TensorFlow
Amazon Web services
Unix shell / awk
Tableau
NosQL

ATLAB/ Octave
Java

Hadoop/ Hive/Pig
Spark / MLb
Microsoft Excel Data Mining

Kaggle, 2017

High Performance Memories & Associative Computing

0% 10% 20% 30% 40% 50% 60%

Python
R 24.0%
saL [l 35%
c/ c++/c# [2.8%
Matiab [2.2%

Java . 1.3%

Scala . 0.9%

Other [J 0.8%
sAs [0.8%
Julia | 0.3%

Stata | 0.3%

Haskell | 0.2%
F# | 0.0%

High Performance Memories & Associative Computing

[l

A\’—[_’ﬁ
e =

Ninjas love open office layouts and unlimired vacation time

The Definitive Guide

The Practical Developer

@ThePracticalDev

High Performance Memories & Associative Computing

(GSL Statistical Analysis
L
4 _ import seaborn as sns
[JJJ \ import matplotlib.pyplot as plt
[‘j}i_:!”:ﬂ l"]@_;&rh Sns.pairplot(nba[[Ilas.tll' Ilfgll, Iltrbll]])
. plt.show()
o library(GGally)
nba %>%
select(ast, fg, trb) %>%
> ggpairs()

High Performance Memories & Associative Computing

-100
000
00
o
400
00
0
-200
1200
000
800
@00
400
00
0
-200

=100 0 100200300400 S006007006800 -200 0 200 400 GO0 800 %0W00-200 O 200 400 GO0 80010001200
ast v i

High Performance Memories & Associative Computing

Packages
pandas e ggplot
scikit-learn e dpir
seaborn e shiny
tensorflow o tidyr
pytorch e quantmod
matplotlib e caret

High Performance Memories & Associative Computing

O

e pipl/virtualenv e builtin

® pypi e CRAN

e (ana)conda e (ana)conda
® pyenv

High Performance Memories & Associative Computing

Run Kemel Tabs Settnge Hep

2 X | ®ootmipmb X ¥ READMEmMd X
» notebooks Python3 O (5] Seuceonse | /.

Name - 1 this Noeback we expicre the Lorenz system of differential ecuations:
- st < () e
Data.oyno F=aly-x) N < 1000 w12}
I8 Fasaiymb PR a— U < mormiN)
18 xidb oy ﬂ:;n X < -2+ rnoemN) numer 1c[1008]
) .« !' 'n" ";"""“"‘? numer (<[1099]
::::u the function once 10 view the solutions, For this set of parameters, we see th Irsectories swifing around two peints, < nky:~ 28 52 nureric[1000]
Allracions.

numeric[1000]

Rwnng

Commands

from lorenz {mpert solve_lorenz
T, Xt + solve_lorenz(N-18)

Cef Tools

e Fets Prkege ey
Py SniNA
- Fizing Liar Macok
def solve_lesanz(N-10, rax_time=4.8, Signa-18.8,
“Blot 3 soluticn to the Lor
f1g = plr.figura()

8,13, rhoczs.

[{ m fstaes) R Doocumantatisn
enz differential equaticns,” ™

Fitting Linear Models

Tots

prapics’ the axes, 14ales - Tapez <Entrée> pour voir Te graphlque sulvant :
ax. et xlin({-25, 25}) Taper <Entrées> pour velr 1o graphique sutvant
ax.ser_ylin Tapez <Entrées pour velr le graphlcue sulvant @
ax.set_zUiR(15, 35} -
> 2ln
dof lorenz_deriv() %9, 3igror1igen, betasbeta, rhowrho): > rdlist = 15())
" e the tine-dérivative of & Loens systen.
>N < 1090
> 0 < rarm(N}
> X4 < -2 + morn(N)
4 Chosse raodie starting poines, unffocely distributad from ~15 o 14 > A2 < 1421 v meex(N)
np.Fancon, seed{l) Py iexieR sy
XB = ~15 & 38 ¢ re.randos. randex({s, 3)) >l laly = xi + x2)
B

s ¥ 2P KYR
return [sigea s (y = &), x = {tha =) =y, x * y - bet

High Performance Memories & Associative Computing

,qur"\Z < NVIDIA.

High Performance Memories & Associative Computing

view & share
notebooks

Interactive compute Titus container

notebook Ul =

— = Jupyt PySpark \
> e upyter ySpa ! 5
ﬂ‘:’:‘ Server kernel | Fythan 2]
ad hoc .

[m nteract execution]
‘) output

interactive
notebook

configure

\
1

job
Legend execution

scheduler Meson
data warehouse services

ad hoc execution

---- scheduled execution ")
1 Metacat Genie
)
)

store & view notebook

Meson - job
Template execution

Parameterized
Notebook
s scheduled compute

-+
|
|

' > . :
scheduled - ’@ ! PySpark :
Papermill - s
K :

I emel notebook

execution

notebook

High Performance Memories & Associative Computing

High Performance Memories & Associative Computing

Monitor Train
Predictions Models

Make Evaluate
Predictions Models

B peploy
Models

High Performance Memories & Associative Computing

\F f
\\;'

 Predictions|
! Request
PyML folder

Hive Table

E Prediction

High Performance Memories & Associative Computing

PyML folder

Predictions

Request Features Hive

Tables

Predictions
Hive Table

Prediction
Online Predictions

import pandas as pd
import numpy as np
from sklearn.datasets import load_breast_cancer

Prepare the dataset

dataset = load_breast_cancer()

feature_columns = [name.replace(’ *,'_') for name in dataset.feature_names.tolist())

pandas_df = pd.DataFrame(data= np.c_[dataset.data, dataset.target],
columns=feature_columns + ['target'])

Train logistic regression
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test « train_test_split(dataset.data,

dataset.target,
random_state-42)
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)

from pyml import Client
client = Client(user_email="kstumpf@uber.com”, team_name="michelangelo")

Upload the model and build the model's Docker image
model_id = client.upload_model(pyml_model)

client.deploy_model(model_id)

High Performance Memories & Associative Computing

B -
ZIP explorer

SO e Matey ’
*he e e s || iesotumes

1000
vzl

Numer 1< 1000]
numeric[1098]
meric{1009]
rumeric{10%]

Taper <Entrées pour volr Te gragMae sulvant ¢
Tapez <Entrée> pour volr le graphave sutvant ¢
Tapez <Entrées pour volr le graphieue sutvant :

»on
> raflist « 1s())
> e 100

>0 < mom(n)

ny s vy
> L aly < xt v x2)

High Performance Memories & Associative Computing

Who's Better ?

VS

High Performance Memories & Associative Computing

A\
LN\

7

l Adding A Language
»

~/ It’s not just about the language.
4/ Consider the broader ecosystem.
-/ The IDE is just as important as the language

~/ Does it fit within a platform / pipeline ?

High Performance Memories & Associative Computing

Q&A

ActiveState

Adding a Language

Thank you to our panelists

Francois Ouellet, Director of Development Practice,

Manulife
George Williams, Director of Data Science and Chief

Evangelist, GSI Technology

State’

What's Next

e Watch ademo;

https:// www.voutube.com/watch?v=c5AIxN9ehr]
e = Ne gl arketing@activestate.com

e Contact us for the language build you need:

olatform@activestate.com

ActiveState

https://www.youtube.com/watch?v=c5AIxN9ehrI
mailto:platform@activestate.com
mailto:platform@activestate.com

ActiveState

Tel: 1.866.631.4581
Website: www.activestate.com
Twitter: @activestate

Facebook: /activestatesoftware

ActiveStaie

http://www.activestate.com

