
ONE LANGUAGE VERSION,
ALL PLATFORMS:
PREVENTING INCOMPATIBILITY WITH CROSS-PLATFORM PYTHON, PERL AND TCL

2

ONE LANGUAGE VERSION,
ALL PLATFORMS

QUALITY INGREDIENTS FOR SOFTWARE:

IT departments like to standardize. To be efficient rolling
out updates and security patches, installing software, or
providing user support, you need to limit the number of
variables as much as possible.

Workstations will be set up to run the same version of
one operating system on similar hardware. Likewise,
servers on the network, though using different hardware
and operating systems than the workstations, will be
clones of one another wherever possible. Though there
are dangers in creating an electronic monoculture (one
bad update could take down all systems) the uniformity
helps limit the number and type of things that can go
wrong. A sysadmin or IT team can become more deeply
knowledgeable about those systems, and have a good
idea what needs to be done when something goes wrong.

Likewise, desktop software should be kept consistent and
up-to-date across the entire company. When someone
in one division sends a document or spreadsheet to
someone in another division, they should be reasonably
confident that the recipient will have the same office
software to view it.

However, there is a class of software that is often
exempted from this strict but sensible policy. Programs
that require an interpreter to run, mostly dynamic
languages such as Perl, Python, Ruby, and Tcl, will often
be set up with the required runtime in an ad-hoc manner,
which can have consequences:

 › Subtle breakages in the application. Backwards
compatibility is a design goal of Perl and Python
releases, but there are sometimes changes which
are not backwards compatible.

 › Testing needs to be redone. If the software is

business or mission critical, a new round of testing
may need to be undertaken to verify the software.

 › Lock-in to a specific operating system version. You
may end up tied to a particular version of an OS
because upgrading would change the language
version.

These problems can be avoided by using a single
language version on all platforms. This approach lets you:

 › use the very latest release, or a specific version that
is known to work with your software

 › use the same version of the language on any
operating system

 › upgrade—or even change—your operating system
while keeping your interpreter version the same - or
the other way around

 › manage language libraries using language-specific
package managers, rather than the operating
system’s tools or ad-hoc installers

De-coupling the language version from the operating
system version and the hardware platform gives system
administrators more flexibility or more consistency,
whichever is needed.

LANGUAGE VERSION COMPATIBILITY

Point releases are to Perl, Python and Tcl what major
version numbers are to less mature technologies. New
features are added, bugs are fixed, and often a great
deal of code is refactored. But, with so much software
depending on these interpreters, compatibility between
these point releases is not treated lightly.

3

ONE LANGUAGE VERSION,
ALL PLATFORMS

Perl 6 and Python 3 are beyond the scope of this paper.
Python 3 breaks backward compatibility intentionally
(though there are tools for partially converting Python
2.x code to Python 3) and Perl 6 should be considered a
whole new language.

Perl in particular has an excellent track record of making
new releases which are compatible with older code, and
the Perl community has codified policies1 on introducing
experimental features and deprecating old ones.

Perl’s development team has taken a very safe approach
to handling incompatible changes:

In other words, the default behavior is the existing
behavior from the previous version. This policy gives
developers confidence that the code they write now
will still be able to run in future releases of Perl. System
administrators will also be more likely to trust that older
code will run with a current release.

Python similarly tries to maintain backwards compatibility
in point releases.2

Like Perl, any incompatible changes have to be in-
troduced gradually. The change has to be described,
discussed, and documented. The next release will not
implement the actual change, but warn users about the

deprecated construct and provide an alternative. After
at least one year has passed, the change can then be
introduced in the next point release.

The stability ensured by these development policies
provides some assurance that code can be migrated
to new versions of the language interpreter and core
libraries without major breakage, but there are situations
where caution is necessary.

CURRENT AND LEGACY APPLICATIONS

Software under active development can keep pace
with this systematic and slow language evolution, but
legacy software will still be susceptible to breakage
when upgrading code that has not been touched in
a long time. The approach to maintaining systems
hosting these two types of software will necessarily
differ.

Software under active development will often be using
the most recently available versions of the language
and requisite modules simply because the project
itself is new. There’s no penalty in using the latest
releases. The code base will be well known by the
developers, so incremental patch and version updates
can be applied with some degree of confidence that
the application will continue to work. At the very least,
they will have a good idea where it might break.

In this situation, developers can take advantage of
new features in the language, and the application can
run on an up-to-date interpreter.

Legacy software on the other hand will often need
to use the language version it was originally built and
tested with. If nobody in the organization is familiar
with the code, updating the software to work with the

“Any language change which breaks backward-
compatibility should be able to be enabled
or disabled lexically. Unless code at a given
scope declares that it wants the new behavior,
that new behavior should be disabled.”

- “Social Contract about Contributed Modules”
RUSS ALLBERY AND THE PERL5-PORTERS.

4

ONE LANGUAGE VERSION,
ALL PLATFORMS

newest language release could be risky, expensive, or
just not worth the hassle. Reliability is more important
than keeping up with the language.

In either case, being tied to the operating system’s
bundled distribution of Python, Perl or Tcl is not
optimal. It limits your ability to set up older or newer
versions as necessary to match the application.

INTERPRETER VERSIONS

Operating system vendors have a lot of software
packages to worry about. Keeping their versions of
Perl, Tcl and Python completely up to date is fairly
low on their priority list. Most will provide updates
for critical security problems, but generally they’re a
bit behind the current language releases. Some are
better than others:

Ubuntu 14.04.3 LTS has Perl 5.18.2 and Python 2.7.5 3

RedHat Software Collections 2.0 has Perl 5.20.0 and

Python 2.7.5 4

Even though these are reasonably modern releases
at the time of this writing, in two or three years they
will be substantially obsolete. Furthermore, there
is a “what you get is what we have” aspect to these
systems: if you are running Perl 5.24.1 on Windows,
it makes sense to run the same version on Ubuntu or
RedHat or OSX, not the one the vendor provides.

Security updates are one thing that drive updates to
language interpreters, as vulnerabilities in OpenSSL
and other libraries are found and patched. The ability
to update all interpreters across all platforms to a
new version with the latest security updates is a big
advantage to the modern IT organization.

“DOWNGRADE-ABILITY”

Though keeping the dynamic language interpreters
fully patched and up to date is the ideal scenario, reality
sometimes dictates that older interpreters are required.
Crucial legacy applications may require an older version of
the language, whose bugs have become features.

If the system interpreter is the only one available, this
could mean holding off on a system update to prevent
breaking the application. This in turn might mean
leaving the system with unpatched security or stability
issues. Upgrading the bundled interpreters on their
own is generally not an option, as they are often deeply
integrated with the OS package manager or other system
administration tools.

A preferable option would be to allow the system
interpreters to stay in sync with the OS and run the
target application with a completely separate installation
of the language. This keeps the OS upgrade schedule
independent of application requirements, and allows for
much finer grained control of the language environment.
Perlbrew and virtualenv are useful tools in this regard.

PLATFORM INDEPENDENCE

Despite striving for homogeneous IT environments, most
organizations deal with a mix of server operating systems.
Over time, any server room will accumulate hardware and
software that reflect the preferences of the IT managers
and the demands or prerequisites of the applications
being hosted. Even when efforts are made to standardize,
there’s often one or more “odd ones out” in an otherwise
homogeneous network. Sometimes desktop systems are
pressed into service as servers.

1. http://perldoc.perl.org/perlpolicy.html#BACKWARD-COMPATIBILITY-AND-DEPRECATION

2. http://www.python.org/dev/peps/pep-0005/

5

ONE LANGUAGE VERSION,
ALL PLATFORMS

Running business-critical applications across disparate
operating systems is not ideal, but it often happens when
one or more pieces of the infrastructure puzzle requires
specific hardware or software. In this situation, minimizing
the variables by standardizing on a particular language
distribution (and version) is essential.

Though most applications will not need to operate
on multiple platforms or operating systems, backup
scripts, monitoring software, and other network
tools often will. To ensure reliable operation, these
applications should run on the same version.

DEVELOPMENT TO PRODUCTION

A more common case of language environment
mismatch is the discrepancy between developer
workstations and production servers - even when both
sets of machines are running Linux.

Corporate production servers tend to be dominated by
Red Hat Enterprise Linux and Suse Linux installations,
with major version upgrades happening much less
frequently than in typical desktop distros. Applications
developed on Ubuntu using the default interpreters
may encounter language-level or module availability
problems when migrating to the production Linux
environment. The problem is even worse when moving
from Linux to Solaris, HP-UX or AIX.

PACKAGE MANAGEMENT

Any discussion of Python, Perl or Tcl version
compatibility needs to discuss their extensive corpus
of third- party public modules. These languages are

popular in part because so much additional special-
purpose code has been written by and given back to
the community at large.

Distributions of these language needs to give easy
access to as many of these as possible. The CPAN
shell for Perl and easy_install or pip for Python are
excellent, but these are not binary package managers
(i.e. any C/ C++ code needs to be compiled at install
time) so module installation is more error prone.
The Tcl community has no centralized system for
publishing public modules, so packages need to
downloaded from a variety of sites in a variety of
formats.

Most Linux and UNIX systems have their own
package managers for installing software. They are
tremendously useful for installing system software,
but they are limited in their ability to deliver language
modules. Red Hat Enterprise Linux 5 has access to 47
Perl packages and 40 Python packages through its
package manager.

As with the language packages themselves, these
modules are often quite out of date compared to what
is available in CPAN or PyPI.

Compare this to more 13,000 modules for Perl 5.20
and above, available from the ActiveState repositories
via PPM.

As in the language itself, there is a strong tradition
in the Perl module author community of backwards
compatibility. Code that works with an older version
of a particular module should generally work with the
latest version.

3. http://distrowatch.com/table.php?distribution=Ubuntu

4. http://distrowatch.com/table.php?distribution=redhat

6

ONE LANGUAGE VERSION,
ALL PLATFORMS

 With Python packages we recommend downloading
your favourites from PYPI using pip and the binary
wheel format. Most popular packages have wheels now
available so you don’t have to worry about building
these modules yourself. In addition, ActiveState’s
Python distribution already ships with many of the most
common packages already built.

ACTIVEPYTHON, ACTIVEPERL,
AND ACTIVETCL

ActiveState’s dynamic language distributions are
uniquely positioned to solve cross-platform, version
and module compatibility problems. Since development
and build maintenance efforts are focused on the
languages themselves rather than a specific operating
system, customers can take advantage of:

 › a choice of up-to-date versions from the main
production branches of:
 › Python - 3.5, 2.7
 › Perl - 5.24, 5.22
 › Tcl - 8.4, 8.5, 8.6

 › builds that are consistent across all available
platforms

 › access to older builds for supporting legacy
software

 › binary packages for thousands of modules via PPM

ActivePython, ActivePerl, and ActiveTcl are the
only commercially supported distributions available for
Windows, Linux, Mac OS X, Solaris, HP-UX and AIX.

Community Edition is a free distribution intended for
non-commercial use available for Windows, Mac OS X
and Linux.

Business Edition adds access to 77 archival versions
of Perl and 50 versions of Python, so if your software
has very specific compatibility requirements, a build is
almost certainly available that will fit.

Enterprise Edition offers additional levels of technical
support, optional IP indemnification, and can include
custom language or module builds.

Talking to a Dynamic Language Expert
If your organization is facing challenges with Python,
Perl, or Tcl, the specialists at ActiveState can go
through the specific requirements of your projects
with you to see which dynamic language distribution
will work for you.

ABOUT ACTIVESTATE
ActiveState believes that enterprises gain a competitive advantage when they are able to quickly create, deploy and efficiently manage software solutions that immediately create business value, but
they face many challenges that prevent them from doing so. The company is uniquely positioned to help address these challenges through our experience with enterprises, people and technology.
ActiveState is proven for the enterprise: more than two million developers and 97 percent of Fortune 1000 companies use ActiveState’s end-to-end solutions to develop, distribute, and manage
their software applications written in Java, Perl, Python, Node.js, PHP, Tcl and other dynamic languages. Global customers like Cisco, CA, HP, Bank of America, Siemens and Lockheed Martin trust
ActiveState to save time, save money, minimize risk, ensure compliance and reduce time to market.

© 2017 ActiveState Software Inc. All rights reserved. ActiveState, ActivePerl, ActiveState Komodo, ActivePerl Pro Studio, and Perl Dev Kit are registered trademarks of ActiveState. All other marks are
property of their respective owners

ActiveState Software Inc.
sales@activestate.com

Phone: +1.778.786.1100
Fax: +1.778.786.1133

Toll-free in North America:
1.866.631.4581

