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For a topic that’s really just about math, statistics and algorithms, Machine 
Learning (ML) is generating a lot of interest with business people. But the 
ability to predict defects, failures and trends is what makes ML of particular 
interest to DevOps teams. ML-powered applications can make us all that 
much more efficient and empowered in our daily lives. And there’s no 
role in software that can benefit from greater efficiency than DevOps.
 
Automation is a key design principle for DevOps teams. In order to speed 
up throughput in the software development lifecycle (SDLC), DevOps 
automates everything from builds to testing to monitoring. But most 
automated tasks are centered around a simple threshold (e.g. >50% of 
CPU usage) or pass/fail (e.g. # of critical warnings found) criteria. This 
means DevOps can end up chasing false positives or not catching 
subtleties in the code that trip alarms later, typically in production.

ML enables the automated assessment of test results for far 
more complex criteria, such as defining thresholds based on 
statistical significance rather than just presence/absence of 
specific criteria. All without slowing down the SDLC.
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OFF-THE-SHELF VS DIY SOLUTIONS

While most next-gen DevOps tools have incorporated ML (such 
as Splunk, New Relic, etc), they essentially function as black boxes. 
And since the underlying algorithms are not exposed it’s difficult to 
trust the results. While some tools do expose controls to a greater or 
lesser extent, it may be more beneficial to create your own solution 
rather than spending resources on tooling that may not fit your 
requirements or provide the level of visibility and trust you require.
 
However, adding the ML skill set to a DevOps team that is already 
expected to know a wide range of technologies can be a huge challenge. 
Because any time an organization adds new capabilities, they typically 
add new people, new teams, and a new set of processes that need to be 
followed. Change at this scale is never easy. As a result, the key to success 
for any ML initiative is the need for executive buy-in, as well as extensive 
communication in order to ensure all of the pieces work together.
 
Recall when you began your DevOps journey: the key to success was getting 
the development and operations folks to work together. You can expect a 
similar thing to happen in your ML journey when you add a data science 
capability to your organization. In this case, you need your data engineers 
to coordinate with your data modellers who need to understand how your 
DevOps people work in order to come together and deliver a great solution.
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UNDERSTANDING THE ML PROJECT WORKFLOW

Whether you build your own solution or purchase one, the first step in any ML 
initiative is figuring out where you can get the biggest bang for your buck. 
DevOps collects reams of data on a daily basis that can be used to streamline 
workflows and orchestration, monitor applications in production, and diagnose 
faults or other issues. Look for the most critical aspect of your workflow that 
is suffering from a lack of actionable information. Then create a project 
definition for it to ensure everyone is aligned toward solving the same goal.

PROJECT DEFINITION (5-10% OF EFFORT)

Data Collection (ongoing effort)
For DevOps, data is collected through multiple 
channels, but text-based log files represent a 
significant source. If you’re like most DevOps 
teams, you can quickly get overwhelmed by 
the shear volume. As a result, combing through 
logs looking for exceptions is typically all your 
team has time for. That’s where ML comes 
in. ML models require a substantial dataset 
in order to train them up -- data that should 
(ideally) be labeled in a consistent format so 
your algorithms can derive correlations, identify 
trends and deliver insights not visible to the 
naked eye or traditional analytics solutions.
 
With labeled data such as time-series log 
data, supervised learning can be used to train 
a predictive model. This means you can focus 
on historical data and use it to predict future 
events like memory leaks, system failures or 
other disruptive anomalies. While unlabeled 
data can also be used in conjunction with 
ML, it requires a different methodology 
called unsupervised learning. Rather than 
predictability, the focus here is primarily on 
uncovering the hidden structures in the data 
through a method known as clustering.

PROJECT DEFINITION 
(5-10% OF EFFORT)

DATA COLLECTION 
(ONGOING EFFORT)

DATA PREPARATION 
(50-80% OF EFFORT)

MODELING 
(10-20% OF EFFORT)

OPERATIONALIZING YOUR 
MODEL (10-20% OF EFFORT)

MODEL RETRAINING 
(ONGOING EFFORT)
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DATA PREPARATION (50-80% OF EFFORT)

The next step is to prepare the data by cleansing (e.g. removing outliers that 
might skew the data, deleting or filling in missing values, etc.) and normalizing 
it (e.g. ensuring that all dates are formatted the same way). While you could 
just write a script to handle data preparation, there are various tools that 
can make the job easier such as Python’s Pandas library, which is terrific 
for indexing, renaming and mapping, as well as doing joins and mergers. 
Be forewarned, however, that even with proper tooling data preparation 
can constitute as much as 80% of the time and effort in any ML initiative.

Modeling (10-20% of effort)
Once the data is prepared the modeling can begin. Creating a model involves 
“fitting” an algorithm to the training data, and then using the model to make 
predictions against the test data. Previously, data science teams would create 
and test their own algorithms. Today, you can leverage a number of well-
known frameworks that provide access to proven algorithms out of the box. 
For example, Python’s Sci-kit Learn library allows you to apply one or more of 
its standard algorithms against your training data until a model can be found 
that closely approximates your data points. The smaller the error between 
your actual data point and the algorithm’s calculation, the better the model 
is likely to be. The process of finding this approximation is called “fitting.”
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OPERATIONALIZING YOUR MODEL (10-20% OF EFFORT)
Once the model is created, the last mile involves incorporating it into an application. 
How you incorporate your trained model into your application really depends on 
where you’ve stored the model. For example, it could be in a database, or a flat 
file that consists of protobufs or JSON. And how you expose your model for use 
by an application is really a function of the architecture you're implementing. 
Whether that’s a monolithic architecture that builds the model right in, or 
whether it’s a more agile architecture that would access the model via an API. 
There's no one best methodology or set of tools for the job. Rather, it depends 
on your organization's standards, developer strengths, and fitness to task.

Model Retraining (Ongoing effort)
But that’s not the end of the project. DevOps data changes over time, which 
means your model will eventually become outdated. As a result, you’ll need to 
plan on retraining your model. How often you do retraining depends on how 
often your data changes. For example, Amazon’s Recommendation Engine, 
which recommends related products during a purchase is updated as many 
as 4 times per day. But Amazon is dealing with a massive amount of data that 
is highly time sensitive since Amazon wants to ensure they're not missing any 
trends in the marketplace. For DevOps, retraining may be more appropriately 
done on a weekly or monthly basis, depending on a number of factors including 
the frequency of events like releases, failures, process changes, etc.
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Now that you have some basic knowledge about what’s involved in 
applying ML to your DevOps data, the next big question is where do 
you start? While you can get started today with your existing personnel, 
you’ll get further faster with dedicated ML staff.  Previously, that meant 
hiring  ML experts, but that’s no longer the case. ML is  a space that’s 
changing rapidly. In fact, it’s gotten to the point where you no longer 
need to be an expert in algorithms in order to, for example, work with 
image or voice recognition. Today, you can work with APIs that provide 
access to a pre-trained model that’s ready to use. For example, Amazon 
has a voice and text recognition service called Lex, which is what drives 
Amazon’s virtual assistant, Alexa. For DevOps, Lex might be useful for 
reading log files and extracting insights in real time – all of which can be 
done by a good technical team without the need for a data scientist.
 
Technology in general is becoming more democratized, but it’s especially 
noticeable with ML. ML tools are getting better and more high-level at an 
extremely rapid pace. As a result, you no longer need to know the low-level 
details required to build up a neural network. Instead, you can just use a 
framework like TensorFlow, specify your 
inputs and the number of layers you want, 
and (as long as your data is prepped) start 
training a model right away. TensorFlow 
abstracts away much of the complexity of 
neural network creation, simplifying tasks 
like image recognition, speech, and natural 
language processing. Another framework, 
Scikit-Learn would be more appropriate 
for performing anomaly detection, such as 
when looking for root cause or detecting 
exceptions in “normal” processing.

HOW TO GET STARTED
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It’s this kind of rapid advancement in open source tools that’s driving the 
majority of the innovation in ML, and, in turn, also driving the growing 
number of commercial solutions. Many of today’s proprietary ML 
solutions are leveraging open source in order to create their offerings. 
These off-the-shelf solutions often provide algorithmic implementations 
out of the box, along with datasets and even pre-trained models.
 
However, the right foundation is neither solely open source nor 
commercial but a mix of the two. For example, it’s unlikely you would 
want to build your own text recognition system when Amazon’s Lex 
is readily available. However, you may want to use Python to support 
not only your data engineering and data science teams, but also 
the deployment of trained models into various applications.
Python is widely considered the open source tool of choice for data 
science projects in general, and ML initiatives in particular. While R is 
still popular with statisticians, Python has the bulk of the ML and data 
engineering libraries, as well as strong Web and API frameworks.
 
For DevOps, Python’s ML functionality is key to helping identify trends over 
time from time-series data, correlating information across different monitoring 
tools, or predicting failures. But Python’s strong Web and API frameworks can 
also help overcome issues with the last mile, namely operationalizing models 
in production. For example, whether you need a full stack Web framework 
like Django or a lightweight, extensible one like Flask, both have excellent 
Web API libraries that can simplify the creation and exposure of your model.

Having consistent tooling across your data engineering, modeling and 
application development groups removes significant barriers to collaboration, 
enhancing your chances for success. Whether you choose to standardize on 
Python, R, Julia or another language, avoid version proliferation by adopting 
a single, standard distribution for all your teams in order to make support 
and maintenance manageable, and eliminate compatibility issues.

BUILDING THE RIGHT ML FOUNDATION
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CONCLUSIONS
DevOps is in a bind. Automation is a key design principle for DevOps teams. 
But despite having automated so much of the release process, DevOps is still 
counted on to deliver ever more frequent releases. The problem lies in the 
fact that an automated Software Development Life Cycle (SDLC) generates 
volumes of distributed, dynamic, opaque and ephemeral data that are 
more than humans can comprehend.  There are significant efficiencies to 
be gained if the data can be analyzed and acted on  in a timely fashion.
 
Data collected through each release cycle, such as velocity, burn rate, and 
defects found, as well as data collected by CI/CD tools, such as successful 
integrations, number of integrations, time between integrations, and defects 
per integration, all have value if they can be properly correlated and evaluated. 
Recent advances in ML make it a viable – and valuable – tool for DevOps 
teams struggling with these kinds of signal-to-noise problems, enabling 
them to take a proactive approach to issues based on accurate predictions.

Given the tremendous benefits that an ML-driven DevOps team can 
bring to the release process, managers need to be ready to take the 
next steps to boost their team’s ML capabilities through hiring, training 
and laying a proper foundation that starts with open source.
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