
DEVOPS 2.0

APPLYING MACHINE
LEARNING IN THE

CI/CD CHAIN

 | White Paper: DevOps 2.0 1

DEVOPS 2.0

For a topic that’s really just about math, statistics and algorithms, Machine
Learning (ML) is generating a lot of interest with business people. But the
ability to predict defects, failures and trends is what makes ML of particular
interest to DevOps teams. ML-powered applications can make us all that
much more efficient and empowered in our daily lives. And there’s no
role in software that can benefit from greater efficiency than DevOps.

Automation is a key design principle for DevOps teams. In order to speed
up throughput in the software development lifecycle (SDLC), DevOps
automates everything from builds to testing to monitoring. But most
automated tasks are centered around a simple threshold (e.g. >50% of
CPU usage) or pass/fail (e.g. # of critical warnings found) criteria. This
means DevOps can end up chasing false positives or not catching
subtleties in the code that trip alarms later, typically in production.

ML enables the automated assessment of test results for far
more complex criteria, such as defining thresholds based on
statistical significance rather than just presence/absence of
specific criteria. All without slowing down the SDLC.

CONTINUOUS FEEDBACK

P
LA

N

BUILD CONTINUOUS

IN
TEGRATION DEPLO

Y

OPERATE

2 White Paper: DevOps 2.0 |

DEVOPS 2.0

OFF-THE-SHELF VS DIY SOLUTIONS

While most next-gen DevOps tools have incorporated ML (such
as Splunk, New Relic, etc), they essentially function as black boxes.
And since the underlying algorithms are not exposed it’s difficult to
trust the results. While some tools do expose controls to a greater or
lesser extent, it may be more beneficial to create your own solution
rather than spending resources on tooling that may not fit your
requirements or provide the level of visibility and trust you require.

However, adding the ML skill set to a DevOps team that is already
expected to know a wide range of technologies can be a huge challenge.
Because any time an organization adds new capabilities, they typically
add new people, new teams, and a new set of processes that need to be
followed. Change at this scale is never easy. As a result, the key to success
for any ML initiative is the need for executive buy-in, as well as extensive
communication in order to ensure all of the pieces work together.

Recall when you began your DevOps journey: the key to success was getting
the development and operations folks to work together. You can expect a
similar thing to happen in your ML journey when you add a data science
capability to your organization. In this case, you need your data engineers
to coordinate with your data modellers who need to understand how your
DevOps people work in order to come together and deliver a great solution.

 | White Paper: DevOps 2.0 3

DEVOPS 2.0

UNDERSTANDING THE ML PROJECT WORKFLOW

Whether you build your own solution or purchase one, the first step in any ML
initiative is figuring out where you can get the biggest bang for your buck.
DevOps collects reams of data on a daily basis that can be used to streamline
workflows and orchestration, monitor applications in production, and diagnose
faults or other issues. Look for the most critical aspect of your workflow that
is suffering from a lack of actionable information. Then create a project
definition for it to ensure everyone is aligned toward solving the same goal.

PROJECT DEFINITION (5-10% OF EFFORT)

Data Collection (ongoing effort)
For DevOps, data is collected through multiple
channels, but text-based log files represent a
significant source. If you’re like most DevOps
teams, you can quickly get overwhelmed by
the shear volume. As a result, combing through
logs looking for exceptions is typically all your
team has time for. That’s where ML comes
in. ML models require a substantial dataset
in order to train them up -- data that should
(ideally) be labeled in a consistent format so
your algorithms can derive correlations, identify
trends and deliver insights not visible to the
naked eye or traditional analytics solutions.

With labeled data such as time-series log
data, supervised learning can be used to train
a predictive model. This means you can focus
on historical data and use it to predict future
events like memory leaks, system failures or
other disruptive anomalies. While unlabeled
data can also be used in conjunction with
ML, it requires a different methodology
called unsupervised learning. Rather than
predictability, the focus here is primarily on
uncovering the hidden structures in the data
through a method known as clustering.

PROJECT DEFINITION
(5-10% OF EFFORT)

DATA COLLECTION
(ONGOING EFFORT)

DATA PREPARATION
(50-80% OF EFFORT)

MODELING
(10-20% OF EFFORT)

OPERATIONALIZING YOUR
MODEL (10-20% OF EFFORT)

MODEL RETRAINING
(ONGOING EFFORT)

4 White Paper: DevOps 2.0 |

DEVOPS 2.0

DATA PREPARATION (50-80% OF EFFORT)

The next step is to prepare the data by cleansing (e.g. removing outliers that
might skew the data, deleting or filling in missing values, etc.) and normalizing
it (e.g. ensuring that all dates are formatted the same way). While you could
just write a script to handle data preparation, there are various tools that
can make the job easier such as Python’s Pandas library, which is terrific
for indexing, renaming and mapping, as well as doing joins and mergers.
Be forewarned, however, that even with proper tooling data preparation
can constitute as much as 80% of the time and effort in any ML initiative.

Modeling (10-20% of effort)
Once the data is prepared the modeling can begin. Creating a model involves
“fitting” an algorithm to the training data, and then using the model to make
predictions against the test data. Previously, data science teams would create
and test their own algorithms. Today, you can leverage a number of well-
known frameworks that provide access to proven algorithms out of the box.
For example, Python’s Sci-kit Learn library allows you to apply one or more of
its standard algorithms against your training data until a model can be found
that closely approximates your data points. The smaller the error between
your actual data point and the algorithm’s calculation, the better the model
is likely to be. The process of finding this approximation is called “fitting.”

 | White Paper: DevOps 2.0 5

DEVOPS 2.0

OPERATIONALIZING YOUR MODEL (10-20% OF EFFORT)
Once the model is created, the last mile involves incorporating it into an application.
How you incorporate your trained model into your application really depends on
where you’ve stored the model. For example, it could be in a database, or a flat
file that consists of protobufs or JSON. And how you expose your model for use
by an application is really a function of the architecture you're implementing.
Whether that’s a monolithic architecture that builds the model right in, or
whether it’s a more agile architecture that would access the model via an API.
There's no one best methodology or set of tools for the job. Rather, it depends
on your organization's standards, developer strengths, and fitness to task.

Model Retraining (Ongoing effort)
But that’s not the end of the project. DevOps data changes over time, which
means your model will eventually become outdated. As a result, you’ll need to
plan on retraining your model. How often you do retraining depends on how
often your data changes. For example, Amazon’s Recommendation Engine,
which recommends related products during a purchase is updated as many
as 4 times per day. But Amazon is dealing with a massive amount of data that
is highly time sensitive since Amazon wants to ensure they're not missing any
trends in the marketplace. For DevOps, retraining may be more appropriately
done on a weekly or monthly basis, depending on a number of factors including
the frequency of events like releases, failures, process changes, etc.

6 White Paper: DevOps 2.0 |

DEVOPS 2.0

Now that you have some basic knowledge about what’s involved in
applying ML to your DevOps data, the next big question is where do
you start? While you can get started today with your existing personnel,
you’ll get further faster with dedicated ML staff. Previously, that meant
hiring ML experts, but that’s no longer the case. ML is a space that’s
changing rapidly. In fact, it’s gotten to the point where you no longer
need to be an expert in algorithms in order to, for example, work with
image or voice recognition. Today, you can work with APIs that provide
access to a pre-trained model that’s ready to use. For example, Amazon
has a voice and text recognition service called Lex, which is what drives
Amazon’s virtual assistant, Alexa. For DevOps, Lex might be useful for
reading log files and extracting insights in real time – all of which can be
done by a good technical team without the need for a data scientist.

Technology in general is becoming more democratized, but it’s especially
noticeable with ML. ML tools are getting better and more high-level at an
extremely rapid pace. As a result, you no longer need to know the low-level
details required to build up a neural network. Instead, you can just use a
framework like TensorFlow, specify your
inputs and the number of layers you want,
and (as long as your data is prepped) start
training a model right away. TensorFlow
abstracts away much of the complexity of
neural network creation, simplifying tasks
like image recognition, speech, and natural
language processing. Another framework,
Scikit-Learn would be more appropriate
for performing anomaly detection, such as
when looking for root cause or detecting
exceptions in “normal” processing.

HOW TO GET STARTED

 | White Paper: DevOps 2.0 7

DEVOPS 2.0

It’s this kind of rapid advancement in open source tools that’s driving the
majority of the innovation in ML, and, in turn, also driving the growing
number of commercial solutions. Many of today’s proprietary ML
solutions are leveraging open source in order to create their offerings.
These off-the-shelf solutions often provide algorithmic implementations
out of the box, along with datasets and even pre-trained models.

However, the right foundation is neither solely open source nor
commercial but a mix of the two. For example, it’s unlikely you would
want to build your own text recognition system when Amazon’s Lex
is readily available. However, you may want to use Python to support
not only your data engineering and data science teams, but also
the deployment of trained models into various applications.
Python is widely considered the open source tool of choice for data
science projects in general, and ML initiatives in particular. While R is
still popular with statisticians, Python has the bulk of the ML and data
engineering libraries, as well as strong Web and API frameworks.

For DevOps, Python’s ML functionality is key to helping identify trends over
time from time-series data, correlating information across different monitoring
tools, or predicting failures. But Python’s strong Web and API frameworks can
also help overcome issues with the last mile, namely operationalizing models
in production. For example, whether you need a full stack Web framework
like Django or a lightweight, extensible one like Flask, both have excellent
Web API libraries that can simplify the creation and exposure of your model.

Having consistent tooling across your data engineering, modeling and
application development groups removes significant barriers to collaboration,
enhancing your chances for success. Whether you choose to standardize on
Python, R, Julia or another language, avoid version proliferation by adopting
a single, standard distribution for all your teams in order to make support
and maintenance manageable, and eliminate compatibility issues.

BUILDING THE RIGHT ML FOUNDATION

DEVOPS 2.0

CONCLUSIONS
DevOps is in a bind. Automation is a key design principle for DevOps teams.
But despite having automated so much of the release process, DevOps is still
counted on to deliver ever more frequent releases. The problem lies in the
fact that an automated Software Development Life Cycle (SDLC) generates
volumes of distributed, dynamic, opaque and ephemeral data that are
more than humans can comprehend. There are significant efficiencies to
be gained if the data can be analyzed and acted on in a timely fashion.

Data collected through each release cycle, such as velocity, burn rate, and
defects found, as well as data collected by CI/CD tools, such as successful
integrations, number of integrations, time between integrations, and defects
per integration, all have value if they can be properly correlated and evaluated.
Recent advances in ML make it a viable – and valuable – tool for DevOps
teams struggling with these kinds of signal-to-noise problems, enabling
them to take a proactive approach to issues based on accurate predictions.

Given the tremendous benefits that an ML-driven DevOps team can
bring to the release process, managers need to be ready to take the
next steps to boost their team’s ML capabilities through hiring, training
and laying a proper foundation that starts with open source.

website: www.activestate.com
Toll-free in NA: 1.866.631.4581
email: solutions@activestate.com

© 2018 ActiveState Software Inc. All rights reserved. ActiveState®,
ActivePerl®, ActiveTcl®, ActivePython®, Komodo®, ActiveGo™,
ActiveRuby™, ActiveNode™, ActiveLua™ and The Open Source
Languages Company™ are all trademarks of ActiveState.

ACTIVESTATE – PYTHON BUILDS SINCE 1999
For more than 20 years, ActiveState has been providing commercially-backed, secure, stable and com-
prehensive open source language distributions that have become renowned for quality, and are now
the de-facto standards for millions of developers around the world. 100% compatible with commu-
nity open source code, ActiveState’s open source language distributions can be freely download-
ed, but crucially also offer guaranteed support SLAs and regular maintenance updates, as well.

