ActiveState[®]

MLOps: Machine Learning Operationalization

ActiveState Webinar

ActiveState

Panelists

- **Nisha Talagala**, Co-Founder, CTO & VP Engineering, *ParallelM*
- **Boris Tvaroska**, Global Artificial Intelligence Solutions Lead, *Lenovo*

Housekeeping

- Webinar recording and slides will be available shortly
- Share questions with panelists using the Question panel
- Q&A session following presentations

Track-record: 97% of Fortune 1000, 20+ years open source
 Polyglot: 5 languages - Python, Perl, Tcl, Go, Ruby
 Runtime Focus: concept to development to production

ActiveState^{*}

Nisha Talaga, ParallelM

Nisha Talagala Co-Founder, CTO & VP Engineering ParallelM

nisha.talagala@parallelm.com

ActiveState[•]

Parallel MLOps: The Last Mile From Data Science to **Business ROI**

NISHA TALAGALA

CTO, ParallelM

Growing AI Investments; Few Deployed at Scale

C-level Executives

Out of 160 reviewed Al use cases:

88% did not progress beyond the experimental stage But successful early Al adopters report:

Profit margins **3–15%** higher than industry average

Source: "Artificial Intelligence: The Next Digital Frontier?", McKinsey Global Institute, June 2017

The ML Development and Deployment Cycle

Bulk of effort today is in the left side of this process (development)

- Many tools, libraries, etc.
- Democratization of Data Science
- Auto-ML

What makes ML uniquely challenging in production? **Part I : Dataset dependency**

- ML 'black box' into which many inputs (algorithmic, human, dataset etc.) go to provide output.
- Difficult to have reproducible, deterministically 'correct' result as input data changes
- ML in production may behave differently than in developer sandbox because live data ≠ training data

What makes ML uniquely challenging in production? Part II : Simple to Complex Practical Topologies

- Multiple loosely coupled pipelines running possibly in parallel, with dependencies and human interactions
- Feature engineering pipelines must match for Training and Inference (CodeGen Pipelines can help here)
- Control pipelines, Canaries, A/B Tests etc.
- Further complexity if ensembles, federated learning etc are used

What makes ML uniquely challenging in production? Part III : Heterogeneity and Scale

- Possibly differing engines (Spark, TensorFlow, Caffe, PyTorch, Sci-kit Learn, etc.)
- Different languages (Python, Java, Scala, R ..)
- Inference vs Training engines
 - Training can be frequently batch
 - Inference (Prediction, Model Serving) can be REST endpoint/custom code, streaming engine, micro-batch, etc.
 - Feature manipulation done at training needs to be replicated (or factored in) at inference
- Each engine presents its own scale opportunities/issues

What makes ML uniquely challenging in production? **Part IV : Compliance, Regulations...**

- Established: Example: Model Risk Management in Financial Services
 - <u>https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf</u>
- Emerging: Example GDPR on Reproducing and Explaining ML Decisions
 - <u>https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-learning-in-the-gdpr/</u>
- Emerging: New York City Algorithm Fairness Monitoring
 - <u>https://techcrunch.com/2017/12/12/new-york-city-moves-to-establish-algori</u> <u>thm-monitoring-task-force/</u>

What makes ML uniquely challenging in production? **Part V : Collaboration, Process**

COLLABORATION

• Expertise mismatch between Data Science & Ops complicates handoff and continuous management and optimization

PROCESS

- Many objects to be tracked and managed (algorithms, models, pipelines, versions etc.)
- ML pipelines are code. Some approach them as code, some not
- Some ML objects (like Models and Human approvals) are not best handled in source control repositories

Parallel

MLOps, DevOps and SDLC

- Integrate with SDLC (Source control repositories, etc.) for code
- Integrate with DevOps for Automation, Scale and Collaboration

How it Works – MCenter Architecture

Summary

- We are at the beginnings of ML Operationalization
- Much like databases (backbone of production applications) need DBAs and software needs DevOps, ML needs MLOps (specialized operationalization practices, tools and training)
- For more information
 - <u>https://www.mlops.org</u> for MLOps resources
 - <u>https://www.parallelm.com</u>

Boris Tvaroska, Lenovo

Boris Tvaroska Global Artificial Intelligence Solutions, Lenovo

btvaroska@lenovo.com

ActiveState^{*}

Integrating data science into SDLC

2018 Lenovo Internal. All rights reserved.

• What can happen?

I did not change a single line of code.

Junior Software Engineer after breaking the build

Lenovo

Different lifecycles

- •Starts with change in code
- Established practice
- ·Iterations in days / weeks

- •Starts which change in code, data or metrics
- Emerging practice
- Iterations as fast as possible, several times per day

• Main challenges

Test

- The wrong result is acceptableNeed to test for False PositivesNeed to test for False Negatives
- •Longer test times
- •More test cases needed

Build & Deploy

- •More artifacts to work with
- •Frequent changes
- •Versioning of artifacts and source data

• Training in test/build cycle

Possible for simple models with small amount of data

Existing toolset

Risks:

- Slow CI/CD cycle
- More failing builds

• Model as a service

• SW emerged in Data Science

• Practical example

2019 Lenovo Internal. All rights reserved.

Boris Tvaroska

Global Solution Lead for Lenovo

Al Innovation Centers

20 years of experience running engineering teams across Europe, North and South America, Middle East, India

Email: <u>btvaroska@lenovo.com</u> <u>boris@tvaroska.sk</u>

Linkedin: www.linkedin.com/in/boristvaroska

Twitter: @btvaroska

Thank you to our panelists

- **Nisha Talagala**, Co-Founder, CTO & VP Engineering, *ParallelM*
- Boris Tvaroska, Global Artificial Intelligence Solutions
 Lead, *Lenovo*

What's Next

- Learn more about our Platform: <u>https://www.activestate.com/platform</u>
- Watch a demo: <u>https://www.youtube.com/watch?v=c5AlxN9</u> <u>ehrl</u>
- Contact <u>platform@activestate.com</u> for more information.

Platform Presentation

Where to find us

Tel: **1.866.631.4581** Website: <u>www.activestate.com</u> Twitter: **@activestate** Facebook: **/activestatesoftware**

