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Build Engineering and its Role in 
Managing Open Source



Pete Garcin
Senior Product Manager
ActiveState
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Track-record: 

Polyglot:

Runtime Focus:
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Open Source in the Enterprise

Build Engineering 
Evolution in Managing OS



Open Source in the Enterprise

More sources, more attack surface, more repositories to manage
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Build Engineering Defined

Who? Developers with:

● Ecosystem knowledge
● Systems knowledge
● Process knowledge

What? Core tasks are:
● Locating canonical sources of libraries, languages, tools, etc.
● Compiling those sources into artifacts.
● Packaging those artifacts for distribution.
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Build Engineering in Relation to SDLC
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Hidden Costs

75%
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Automating Build Engineering

● Environment configuration
● Dependency management
● Build execution and storage. 
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What are the challenges?

● Automate, systematize, componentize builds
● Seamless, effortless and reproducible across your 

team and organization. 
● Reproducibility, critical for testing, deployment and 

development — without it, nobody is speaking the 
same language.
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Challenges in Build Engineering

Environment 
Configuration

Dependency 
Management

Build 
Reproducibility

Build Engineering 
Evolution in Managing OS



Environment Configuration

Compiler 
version

Toolchain 
setup

Language /Tool 
versions Setup
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Dependency Management
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Version 
Pinning

Binary Sources
Dependency 

Chains
Monitoring 

CVEs, Licenses



Automation Wins
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Developer 
Time

Developer 
Sanity

Shrink
Tech Debt



Potential Features + Automation

● “Free” speculative builds
● Build revisions as source control — can be forked, 

reverted, merged, etc.
● Integration with your CI
● No more local hacks, “Franken-builds”, etc. — 

everything is audited and guaranteed
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ActiveState Platform
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Build Engineering - Why It’s Hard 
and Why You Still Need It



Shaun Lowry
Build Engineering Lead
ActiveState
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Third-party software

● Many benefits of using open source components

● OSS or licensed components offer shortcuts and 
competitive advantage

● How to incorporate 3rd-party components
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What’s so hard?

Compiling disparate OSS components

●
●
●
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Compilers

● Different compilers disallow different code

● Same for compiler versions

● Some even have different ABIs between versions 
(GCC4 vs GCC5)
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Build Tools

setup.py
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Autotools CustomCmakeBazel



Dependencies
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C libraries

● Assumed to be on the system
○

● Source included with package
○

● Download source at build time (!)
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Example

● Builds using bazel
○
○

● Many variations, optional support
○
○
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Why?
That’s scary! What’s wrong with just downloading free stuff?
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● Was that zipfile/wheel/magic binary 
really compiled from that source?

● What else is in there?

● How many people are you trusting?

● Do your customers trust all of them?

Build Engineering 
Evolution in Managing OS



● OS or runtime dependencies
○

● Uniform compiler

● Hardware dependencies
○
○
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Bugs

●

●

Licenses

●

●
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Example: wand

● Python binding to ImageMagick
○

● ImageMagick needs Ghostscript for PDF 
manipulation
○
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So what should I do?

● Building OSS from source can be hard to deal with

● Not building from source can be worse

● Incorporate OSS builds into your own pipeline

● Outsource OSS builds to a single trusted source
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Q & A



● Watch a demo: 
https://www.youtube.com/watch?v=c5AIxN9ehrI

● Get a demo marketing@activestate.com

● Contact us for the language build you need: 
platform@activestate.com

https://www.youtube.com/watch?v=c5AIxN9ehrI
mailto:platform@activestate.com
mailto:platform@activestate.com


Tel: 1.866.631.4581

Website: www.activestate.com

Twitter: @activestate

Facebook: /activestatesoftware

Platform Presentation

Where to find us

http://www.activestate.com

