
Build Engineering



● Pete Garcin, Senior Product Manager, ActiveState

● Shaun Lowry, Build Engineering Lead, ActiveState

Build Engineering 
Evolution in Managing OS



Build Engineering and its Role in 
Managing Open Source



Pete Garcin
Senior Product Manager
ActiveState

Platform Presentation
Build Engineering 

Evolution in Managing OS



Track-record: 

Polyglot:

Runtime Focus:

Build Engineering 
Evolution in Managing OS



Open Source in the Enterprise

Build Engineering 
Evolution in Managing OS



Open Source in the Enterprise

More sources, more attack surface, more repositories to manage

Build Engineering 
Evolution in Managing OS



Build Engineering Defined

Who? Developers with:

● Ecosystem knowledge
● Systems knowledge
● Process knowledge

What? Core tasks are:
● Locating canonical sources of libraries, languages, tools, etc.
● Compiling those sources into artifacts.
● Packaging those artifacts for distribution.

Build Engineering 
Evolution in Managing OS



Build Engineering in Relation to SDLC

Build Engineering 
Evolution in Managing OS

SDLCMissing LinkBuild Engineer



Hidden Costs

75%

Build Engineering 
Evolution in Managing OS



Automating Build Engineering

● Environment configuration
● Dependency management
● Build execution and storage. 

Build Engineering 
Evolution in Managing OS



What are the challenges?

● Automate, systematize, componentize builds
● Seamless, effortless and reproducible across your 

team and organization. 
● Reproducibility, critical for testing, deployment and 

development — without it, nobody is speaking the 
same language.

Build Engineering 
Evolution in Managing OS



Challenges in Build Engineering

Environment 
Configuration

Dependency 
Management

Build 
Reproducibility

Build Engineering 
Evolution in Managing OS



Environment Configuration

Compiler 
version

Toolchain 
setup

Language /Tool 
versions Setup

Build Engineering 
Evolution in Managing OS



Dependency Management

Build Engineering 
Evolution in Managing OS

Version 
Pinning

Binary Sources
Dependency 

Chains
Monitoring 

CVEs, Licenses



Automation Wins

Build Engineering 
Evolution in Managing OS

Developer 
Time

Developer 
Sanity

Shrink
Tech Debt



Potential Features + Automation

● “Free” speculative builds
● Build revisions as source control — can be forked, 

reverted, merged, etc.
● Integration with your CI
● No more local hacks, “Franken-builds”, etc. — 

everything is audited and guaranteed

Build Engineering 
Evolution in Managing OS



ActiveState Platform

Build Engineering 
Evolution in Managing OS



Build Engineering - Why It’s Hard 
and Why You Still Need It



Shaun Lowry
Build Engineering Lead
ActiveState

Platform Presentation
Build Engineering 

Evolution in Managing OS



Third-party software

● Many benefits of using open source components

● OSS or licensed components offer shortcuts and 
competitive advantage

● How to incorporate 3rd-party components

Build Engineering 
Evolution in Managing OS



What’s so hard?

Compiling disparate OSS components

●
●
●

Build Engineering 
Evolution in Managing OS



Compilers

● Different compilers disallow different code

● Same for compiler versions

● Some even have different ABIs between versions 
(GCC4 vs GCC5)

Build Engineering 
Evolution in Managing OS



Build Tools

setup.py

Build Engineering 
Evolution in Managing OS

Autotools CustomCmakeBazel



Dependencies

Build Engineering 
Evolution in Managing OS



C libraries

● Assumed to be on the system
○

● Source included with package
○

● Download source at build time (!)

Build Engineering 
Evolution in Managing OS



Example

● Builds using bazel
○
○

● Many variations, optional support
○
○

Build Engineering 
Evolution in Managing OS



Why?
That’s scary! What’s wrong with just downloading free stuff?

Build Engineering 
Evolution in Managing OS



● Was that zipfile/wheel/magic binary 
really compiled from that source?

● What else is in there?

● How many people are you trusting?

● Do your customers trust all of them?

Build Engineering 
Evolution in Managing OS



● OS or runtime dependencies
○

● Uniform compiler

● Hardware dependencies
○
○

Build Engineering 
Evolution in Managing OS



Bugs

●

●

Licenses

●

●

Build Engineering 
Evolution in Managing OS



Example: wand

● Python binding to ImageMagick
○

● ImageMagick needs Ghostscript for PDF 
manipulation
○

Build Engineering 
Evolution in Managing OS



So what should I do?

● Building OSS from source can be hard to deal with

● Not building from source can be worse

● Incorporate OSS builds into your own pipeline

● Outsource OSS builds to a single trusted source

Build Engineering 
Evolution in Managing OS



Q & A



● Watch a demo: 
https://www.youtube.com/watch?v=c5AIxN9ehrI

● Get a demo marketing@activestate.com

● Contact us for the language build you need: 
platform@activestate.com

https://www.youtube.com/watch?v=c5AIxN9ehrI
mailto:platform@activestate.com
mailto:platform@activestate.com


Tel: 1.866.631.4581

Website: www.activestate.com

Twitter: @activestate

Facebook: /activestatesoftware

Platform Presentation

Where to find us

http://www.activestate.com

