ActiveState

Build Engineering

The Evolution of Build Engineering in
Managing Open Source

Build Engineering
Evolution in Managing OS

Panelists

e Pete Garcin, Senior Product Manager, ActiveState

e Shaun Lowry, Build Engineering Lead, ActiveState

State’

ActiveState

Build Engineering and its Role Iin
Managing Open Source

Pete Garcin, ActiveState

Build Engineering

Evolution in Managing OS

Pete Garcin
Senior Product Manager
ActiveState

State

Build Engineering

Evolution in Managing OS

o T
T

Capita/lOnel' Bankof America %% %ANﬂ:FI% Sﬁﬁf\“ HSBC <> TESCO Bank CREDIT SUSSE\
BOMBARDIER GE Aviation P—— @’ SIEMENS ! IIIS- ! I;
‘ o —
(inteD) iz B® Microsoft Hewlett Packard verizon’
technologies —_ == nterprise

Track-record: 97% of Fortune 1000, 20+ years open source
Polyglot: 5 languages - Python, Perl, Tcl, Go, Ruby

Runtime Focus: concept to development to production

State

Build Engineering
Evolution in Managing OS

Open Source in the Enterprise

Applications built with Open Source

Have Vulnerabilities

Not Compliant

AcliveState

Build Engineering

Evolution in Managing OS

Open Source in the Enterprise

More sources, more attack surface, more repositories to manage

state)

Build Engineering

Evolution in Managing OS

Build Engineering Defined

Who? Developers with:

e Ecosystem knowledge
e Systems knowledge
e Process knowledge

What? Core tasks are:

e Locating canonical sources of libraries, languages, tools, etc.
e Compiling those sources into artifacts.
e Packaging those artifacts for distribution.

state)

Build Engineering
Evolution in Managing OS

Build Engineering in Relation to SDLC

=ta] & &

Build Engineer Missing Link SDLC
State

)
c
=
0
]
=
)
c
i
9
3
m

Evolution in Managing OS

Hidden Costs

%
75%
Managing
dependencies

State’

Build Engineering
Evolution in Managing OS

Automating Build Engineering

e Environment configuration
e Dependency management
e Build execution and storage.

>

</¢I

state)

Build Engineering
Evolution in Managing OS

What are the challenges?

Automate, systematize, componentize builds
Seamless, effortless and reproducible across your
team and organization.

Reproducibility, critical for testing, deployment and
development — without it, nobody is speaking the
same language.

State’

Build Engineering
Evolution in Managing OS

Challenges in Build Engineering

SAY NO TO

DEPENDENCY
HELL
Environment Dependency Build
Configuration Management Reproducibility

state)

Build Engineering
Evolution in Managing OS

QQ Environment Configuration

Toolchain Language /Tool
setup versions Setup

AcliveState

<[>

Compiler
version

Build Engineering

‘ Evolution in Managing OS

SAYNOTO
DEPENDENCY
HELL

Dependency Management

3

Version Monitori Binary Sources Dependency
Pinning CVEs, Licen Chains

State’

Build Engineering
Evolution in Managing OS

Automation Wins

DEBT

Shrink

Developer Developer
Tech Debt

Time Sanity

AcliveState

Build Engineering
Evolution in Managing OS

Potential Features + Automation

“Free"” speculative builds

Build revisions as source control — can be forked,
reverted, merged, etc.

Integration with your Cli

No more local hacks, “Franken-builds”, etc. —
everything is audited and guaranteed

State’

Build Engineering

Evolution in Managing OS

ActiveState Platform

Open Source

Repos

A 6

-Go &

Vulnerability
Databases

n NWVD
W¥ = Sonatype
© srackouck

Code Repos
& Managers

(Wl |
O git

ActiveState

BUILD - CERTIFY - RESOLVE

Developer
Machines

EE&C

—b

Cl Tools

)

> 16

circleci TeamCity

=

Binary Repos

O

JFrog Artifactory

£2 Nlexus

Deployment

ﬂ aws W
~—" docker

A

ActiveState

Build Engineering - Why It's Hard
and Why You Still Need It

Shaun Lowry, ActiveState

Build Engineering
Evolution in Managing OS

Shaun Lowry
Build Engineering Lead
ActiveState

State

Build Engineering
Evolution in Managing OS

Third-party software

Many benefits of using open source components

OSS or licensed components offer shortcuts and
competitive advantage

How to incorporate 3rd-party components

State’

Build Engineering
Evolution in Managing OS

What'’s so hard?

Compiling disparate OSS components

e Not all authors use the same tools
e Not all authors care about your platform(s)
e Authors might be great SMEs, but not great engineers

State’

Build Engineering
Evolution in Managing OS

Compilers

Different compilers disallow different code

Same for compiler versions

Some even have different ABIs between versions
(GCC4 vs GCC5)

State’

Build Engineering
Evolution in Managing OS

Build Tools

setup.py </®

Autotools Bazel Cmake Custom

State’

Build Engineering

Evolution in Managing OS

Dependencies

ACTIVEPYTHON

f ’NumPy
TensorFlow
pandas S

AcliveState

Build Engineering

Evolution in Managing OS

clc

C libraries

e Assumed to be on the system
o Sometimes incompatible (e.g. libffi, libgdlbm)

e Source included with package
o Do not keep pace with security updates

e Download source at build time (!)

state)

Build Engineering
Evolution in Managing OS

i Example

TensorFlow

e Builds using bazel
o Tensorflow versions sensitive to bazel version
o Take hours

e Many variations, optional support
o for additional instruction sets (SSE, AVX, AVX2)
o for GPU acceleration (CUDA)

State’

Build Engineering

Evolution in Managing OS

Why?

That’s scary! What's wrong with just downloading free stuff?

TRUST COMPATIBILITY LIABILITY

AcliveState

TRUST

Build Engineering
Evolution in Managing OS

Was that zipfile/wheel/magic binary
really compiled from that source?

What else is in there?
How many people are you trusting?

Do your customers trust all of them?

state)

Build Engineering

Evolution in Managing OS

e OS or runtime dependencies
o Glibc, ucrt, msvcrt etc.

e Uniform compiler

e Hardware dependencies

COM PATIBILITY o Instruction set optimisations

o GPU availability

‘cliveState

LIABILITY

Build Engineering
Evolution in Managing OS

Bugs

What happens when one hits a
customer??

How quickly can you address it?

Licenses

Are your licenses compatible with
every 3rd-party package?

What about the packages they bring
with them?

State’

Build Engineering
Evolution in Managing OS

Example: wand

e Python binding to ImageMagick

o ImageMagick has different licenses at different
versions

e ImageMagick needs Ghostscript for PDF
manipulation
o Ghostscript is AGPL

State’

Build Engineering
Evolution in Managing OS

So what should | do?

Building OSS from source can be hard to deal with
Not building from source can be worse
Incorporate OSS builds into your own pipeline

Outsource OSS builds to a single trusted source

State’

Q&A

ActiveState

What's Next

Watch a demo:

https:// www.voutube.com/watch?v=c5AIxN9ehr]

@l=i=Ne[=laatef Marketing@activestate.com

Contact us for the language build you need:

olatform@activestate.com

ActiveState

https://www.youtube.com/watch?v=c5AIxN9ehrI
mailto:platform@activestate.com
mailto:platform@activestate.com

Platform Presentation

Where to find us

Tel: 1.866.631.4581
Website: www.activestate.com
Twitter: @activestate

Facebook: /activestatesoftware

ActiveState

http://www.activestate.com

