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Track-record: 97% of Fortune 1000, 20+ years open source
Polyglot: 5 languages - Python, Perl, Tcl, Go, Ruby

Runtime Focus: concept to development to production
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Open Source in the Enterprise

Applications built with Open Source

Have Vulnerabilities

Not Compliant

AcliveState
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Open Source in the Enterprise

More sources, more attack surface, more repositories to manage
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Build Engineering Defined

Who? Developers with:

e Ecosystem knowledge
e Systems knowledge
e Process knowledge

What? Core tasks are:

e Locating canonical sources of libraries, languages, tools, etc.
e Compiling those sources into artifacts.
e Packaging those artifacts for distribution.
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Build Engineering in Relation to SDLC
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Build Engineer Missing Link SDLC
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Evolution in Managing OS

Hidden Costs

%
75%
Managing
dependencies
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Automating Build Engineering

e Environment configuration
e Dependency management
e Build execution and storage.
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What are the challenges?

Automate, systematize, componentize builds
Seamless, effortless and reproducible across your
team and organization.

Reproducibility, critical for testing, deployment and
development — without it, nobody is speaking the
same language.
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Challenges in Build Engineering

SAY NO TO

DEPENDENCY
HELL
Environment Dependency Build
Configuration Management Reproducibility
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QQ Environment Configuration

Toolchain Language /Tool
setup versions Setup
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SAYNOTO
DEPENDENCY
HELL

Dependency Management

3

Version Monitori Binary Sources Dependency
Pinning CVEs, Licen Chains
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Automation Wins

DEBT

Shrink

Developer Developer
Tech Debt

Time Sanity
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Potential Features + Automation

“Free"” speculative builds

Build revisions as source control — can be forked,
reverted, merged, etc.

Integration with your Cli

No more local hacks, “Franken-builds”, etc. —
everything is audited and guaranteed
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Build Engineering - Why It's Hard
and Why You Still Need It
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Third-party software

Many benefits of using open source components

OSS or licensed components offer shortcuts and
competitive advantage

How to incorporate 3rd-party components
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What'’s so hard?

Compiling disparate OSS components

e Not all authors use the same tools
e Not all authors care about your platform(s)
e Authors might be great SMEs, but not great engineers
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Compilers

Different compilers disallow different code

Same for compiler versions

Some even have different ABIs between versions
(GCC4 vs GCC5)
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Build Tools

setup.py </®

Autotools Bazel Cmake Custom
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Dependencies

ACTIVEPYTHON

f ’NumPy
TensorFlow
pandas S
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clc

C libraries

e Assumed to be on the system
o Sometimes incompatible (e.g. libffi, libgdlbm)

e Source included with package
o Do not keep pace with security updates

e Download source at build time (!)
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i Example

TensorFlow

e Builds using bazel
o Tensorflow versions sensitive to bazel version
o Take hours

e Many variations, optional support
o for additional instruction sets (SSE, AVX, AVX2)
o for GPU acceleration (CUDA)
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Why?

That’s scary! What's wrong with just downloading free stuff?

TRUST COMPATIBILITY LIABILITY
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Was that zipfile/wheel/magic binary
really compiled from that source?

What else is in there?
How many people are you trusting?

Do your customers trust all of them?

state )



Build Engineering

Evolution in Managing OS

e OS or runtime dependencies
o Glibc, ucrt, msvcrt etc.

e Uniform compiler

e Hardware dependencies

COM PATIBILITY o Instruction set optimisations

o GPU availability
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Bugs

What happens when one hits a
customer??

How quickly can you address it?

Licenses

Are your licenses compatible with
every 3rd-party package?

What about the packages they bring
with them?
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Example: wand

e Python binding to ImageMagick

o ImageMagick has different licenses at different
versions

e ImageMagick needs Ghostscript for PDF
manipulation
o Ghostscript is AGPL
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So what should | do?

Building OSS from source can be hard to deal with
Not building from source can be worse
Incorporate OSS builds into your own pipeline

Outsource OSS builds to a single trusted source
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What's Next

Watch a demo:

https:// www.voutube.com/watch?v=c5AIxN9ehr]

@l=i=Ne[=laatef Marketing@activestate.com

Contact us for the language build you need:

olatform@activestate.com

ActiveState
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Platform Presentation

Where to find us

Tel: 1.866.631.4581
Website: www.activestate.com
Twitter: @activestate

Facebook: /activestatesoftware
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