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Machine Learning
> Transforming almost every business
> Exploding ecosystem of tools, making 

it more accessible to even non-experts
> TensorFlow, by Google has become 

the most popular package in this 
ecosystem



TensorFlow
● Google’s library for ML
● Expresses calculations as a 

computation graph
● Many language bindings
● Supports/provides pre-

trained models
● 72K stars on GitHub!



Tensorflow
> Official bindings for Python, C, Java, 

Go
> Library is written in C++
> Used as a ‘back end’ in wrapper 

libraries



TensorFlow
> Computation Graph is a 

graph where the nodes 
are operators (add, sub, 
multiply, etc.)

> Edges are tensors
> Tensors are effectively N-

dimensional arrays

Operation

Tensor A Tensor B

Output 
Tensor



Tensors
> N-dimensional arrays
> Types of operations:

>Matrix operations
>Linear algebra
>Vector math



Optimization Cases
> Training neural networks
> Large data sets
> Complex deep learning networks
> Real-time Inference



Optimizing TensorFlow
> Data storage

>Allocations, Conversions, Layout, etc.
> Parallelization

>Taking advantage of cores, etc.
> Instruction optimization

>MKL style operation optimization



Intel Optimizations
> Intel provides optimizations to take maximum 

advantage of their hardware

> For example, Intel MKL (Math Kernel Library) 
provides impressive results on fundamental 
math operations



Intel Optimizations
> ActivePython includes MKL, and work to include 

additional optimizations as they become 
available

> TensorFlow specific optimizations offer dramatic 
speed increases for commercial applications



Simple MKL Performance Example
for nSize in range(0, 10):

a = np.random.rand(nSize,nSize) 

result = np.linalg.eig(a);

A simple test that computes the eigenvalues and normalized eigenvectors of a random square 
matrix of increasing size.



Linear Algebra Test - NumPy w/ Intel® MKL

4X Faster!



Optimizing TensorFlow
> Mohammad Ashraf Bhuiyan - Intel Artificial 

Intelligence Group, Senior Software Engineer
> 10+ years in software in various roles
> GitHub: mbhuiya



Deep Learning: Example

Filter = 3 x 3 Stride = 2 Pad_size = 1

Convolution Parameters:
Number of outputs/feature-maps: < 4 >
Filter size: < 3 x 3 >
Stride: < 2 >
Pad_size (for corner case): <1>

Feature 
maps



Deep Learning: Train Once Use 
Many Times

Step 1: Training 
(Over Hours/Days/Weeks)

Person

90% person
8% traffic light

Input data

Output 
classification

Create deep 
network

Step 2: Inference
(Real Time)

New input from 
camera and 

sensors

Output 
classification

Trained neural 
network model

97% 
person

Trained 
Model



Bigger Data Better Hardware Smarter Algorithms

Deep Learning: Why Now?

Image: 1000 KB / picture
Audio: 5000 KB / song
Video: 5,000,000 KB / movie

Transistor density doubles 
every 18 months
Cost / GB in 1995: $1000.00
Cost / GB in 2015: $0.03

Advances in algorithm 
innovation, including neural 
networks, leading to better 
accuracy in training models



TensorFlow
• 2nd generation open source machine learning framework from Google*
• Widely used across Google in many key apps – search, Gmail, photos, 

translate, etc.

• General computing mathematical framework used on: 

• Deep neural network

• Other machine learning algorithm 

• Core system provides set of key computational extendable kernel
• Core in C++, front end wrapper is in python

• Multi-node support using proprietary GRPC, VERBS, MPI protocols 



Tensorflow Optimizations at Intel

1. Operator-level optimizations in TensorFlow* for Intel® Architectures
• Intel® MKL integration

2. Graph-level optimizations in TensorFlow* for Intel® Architectures 
• Data layout conversion optimization
• Node merging optimization
• Memory allocation
• Load balancing



Operator-level optimization
• Intel® MKL has optimized common 

set of primitives

• Call Intel® MKL API for executing 
Tensorflow operation

• Require Data layout conversion: 
> TF code
> TF layout to MKL layout
> Call MKL API
> MKL layout to TF layout
> TF code



Operator-level optimizations: 
Example

class MklConv2DOp : public OpKernel {

void Compute (OpKernelContext* context) override {

const Tensor& tf_input = context->input(0);

const Tensor& tf_filter = context->input(1);

Tensor* output = context->allocate_output(..);

mkl_input = convert_to_mkldnnlayout(tf_input);

mkl_filter = convert_to_mkldnnlayout(tf_filter);

mkl_output = mkldnn_conv2d_fwd(mkl_input, mkl_filter,…);
*output = convert_to_tflayout(mkl_output);

}

};

Graph optimizations address the overhead of data layout conversion



Forward

• Conv2D
• Relu
• MaxPooling
• AvgPooling
• LRN
• FusedBatchNorm
• MatMul

• MklToTF (convert)

Backward

• Conv2DGrad
• ReluGrad
• MaxPoolingGrad
• AvgPolingGrad
• LRNGrad
• FusedBatchNormGrad

• TransposeCpu
• Reshape

Tensorflow* Operations optimized for 
Intel® Architectures



Graph optimizations



Graph optimizations in TensorFlow* 
for Intel® Architectures

• Graph has complete view of the operations and their context.
• Enable cross-operation optimizations

• Graph optimizations
1. Data layout conversion optimizations
2. Node merging (also called Fusion)
3. Memory allocation
4. Load balancing



Data Layout Conversion 
Optimization



Data layout conversion optimization 
- Example

• Layout conversions are expensive 
data shuffling operations.

• The challenge is how to avoid 
unnecessary conversions

• Optimizations: 
• Find out sub-graphs that contain all 

operators supported by Intel® MKL.
• Then introduce layout conversions on 

the boundary of the subgraphs.



Layout conversion optimization

• Based on Google’s suggestions, our 
current implementation emits Intel® 
MKL layout as an extra output tensor.

• Example: if X = Conv2D(A, B) was earlier 
operator, then   X_mkl = _MklConv2D(A, 
B, A_m, B_m) is a new operator.

✓ A_m, B_M are MKL layout of A and B 



Need Graph Rewrite Pass : Rewrite 
TF op to MKL op

• Example:
• Conv2D takes 2 inputs and produces 1 output.
• We want Conv2D to accept 4 inputs and 

produce 2 output.
• That is why we need new Conv2D operator 

(_MklConv2D).
• A graph pass rewrite TF operators into MKL 

operators.

• File: core/graph/mkl_layout_pass.cc



Node fusion optimization



Fusion optimization

• Identify common pattern of operators that arise in most deep learning 
models

• Merge matching subgraph for the pattern to produce smaller graph nodes

• Currently, we merge Conv2D+Bias to new node _MklConv2DWithBias.

• Implementation
• Perform in the same graph rewrite pass that rewrites nodes for data layout 

conversion optimization



Conv2D and BiasAdd: Merge 
process

Forward Pass

Backward Pass

Conv2D

input

BiasAdd

Filter

Bias Conv2DWithBias

input Filter Bias

BiasAddGrad
Conv2DBac
kpropInput

Conv2DBac
kpropFilter

Relu
Grad

Conv2DBack
propBias

Conv2DBac
kpropInput

Conv2DBac
kpropFilter

Before Merge After Merge

Relu
Grad



Memory Allocation



Optimization: Memory Allocation
• Most NN operators allocate huge chunk of memory (Conv2D ~ 

hundred of MBs)
• Default CPU allocator in TensorFlow -> frequent allocs/deallocs of 

huge chunk of memory -> frequent mmap/unmap -> unnecessary 
page clears

• We developed Custom Pool Allocator using existing Pool allocator.
• Allocator holds on to released memory rather than releasing to OS 

directly.
• Code: tensorflow/core/common_runtime/mkl_cpu_allocator.h



Load Balancing



• Tensorflow is a data-flow graph.
• It offers excellent opportunity for exploiting parallelism 
✓ Between operators.
✓ Within operators.
• Thread pool parameters:

1. Inter_op_parallelism_threads = max number of operators that 
can be executed in parallel

2. Intra_op_parallelism_threads = max number of threads to use 
for executing an operator

3. MKL Threads = operators controlled using OMP_NUM_THREADS. 
OMP_NUM_THREADS is conceptually same as 
intra_op_parallelism_threads.

Thread Pool and Parallelism



Current Threading Issues & Solution
> Problem:

• Incorrect setting of inter_op_threads and intra_op_threads can lead to over-
or under-subscription, leading to poor performance.

> Solution:
• Settings for inter_op, intra_op and OMP_NUM_THREADS were explored to get the 

best performance . Typically:
• Intra_op = OMP_NUM_THREADS = # of physical cores in CPU
• inter_op = # of sockets in a system
• Google performance guide: https://www.tensorflow.org/performance/performance_guide

• No changes to Tensorflow code; changes to the run command.



Performance Improvement



Optimized Tensorflow Performance 
on Intel® Xeon® processor 



Optimized Tensorflow Performance 
on Intel® Xeon Phi® processor 



How Do I Get Order of Magnitude 
CPU Speedup?
• Optimized TensorFlow on Intel architectures available from the public git.

• git clone https://github.com/tensorflow/tensorflow.git 
• Configure for best performance on CPU:

• Run “./configure” from the TensorFlow source directory
• Building for best performance on CPU

• Use following command to create a pip package that can be used to install the 
optimized TensorFlow wheel

• bazel build --config=mkl --s --c opt //tensorflow/tools/pip_package:build_pip_package
• Automatically downloads latest MKL-ML

• Install the optimized TensorFlow wheel
• bazel-bin/tensorflow/tools/pip_package/build_pip_package ~/path_to_save_wheel
• pip install --upgrade --user ~/path_to_save_wheel/wheel_name.whl 



Summary
• TensorFlow* is widely used DL and AI framework

• It has been slow on CPU until recently
• Unique performance challenges addressed: MKL, data layout, inter/intra 

layer parallelization, etc.
• Significant performance gains from Intel optimization on Intel® Xeon and 

Xeon Phi processors

• Call to action:
• Use the right configuration for Tensorflow building 
• Find the best set of parameter for running models with Tensorflow
• Get the orders of magnitude higher performance



Legal Disclaimers
• Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor 

families: Go to: Learn About Intel® Processor Numbers http://www.intel.com/products/processor_number
• Some results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software 

design or configuration may affect actual performance.
• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark 

and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the 
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance 
of that product when combined with other products.

• Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its customers to 
visit the referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect 
performance of systems available for purchase. 

• Relative performance is calculated by assigning a baseline value of 1.0 to one benchmark result, and then dividing the actual benchmark result for the baseline 
platform into each of the specific benchmark results of each of the other platforms, and assigning them a relative performance number that correlates with the 
performance improvements reported. 

• SPEC, SPECint, SPECfp, SPECrate, SPECpower, SPECjbb, SPECompG, SPEC MPI, and SPECjEnterprise* are trademarks of the Standard Performance Evaluation 
Corporation.  See http://www.spec.org for more information. 

• TPC Benchmark, TPC-C, TPC-H, and TPC-E are trademarks of the Transaction Processing Council. See http://www.tpc.org for more information.
• No computer system can provide absolute reliability, availability or serviceability.  Requires an Intel® Xeon® processor E7-8800/4800/2800 v2 product families or 

Intel® Itanium® 9500 series-based system (or follow-on generations of either.)  Built-in reliability features available on select Intel® processors may require additional 
software, hardware, services and/or an internet connection.  Results may vary depending upon configuration.  Consult your system manufacturer for more details.
For systems also featuring Resilient System Technologies:  No computer system can provide absolute reliability, availability or serviceability.  Requires an Intel® Run 
Sure Technology-enabled system, including an enabled Intel processor and enabled technology(ies).  Built-in reliability features available on select Intel® processors 
may require additional software, hardware, services and/or an Internet connection.  Results may vary depending upon configuration.  Consult your system 
manufacturer for more details. 
For systems also featuring Resilient Memory Technologies:  No computer system can provide absolute reliability, availability or serviceability.  Requires an Intel® Run 
Sure Technology-enabled system, including an enabled Intel® processor and enabled technology(ies).  built-in reliability features available on select Intel® processors 
may require additional software, hardware, services and/or an Internet connection.  Results may vary depending upon configuration.  Consult your system 
manufacturer for more details. 

http://www.intel.com/products/processor_number


Optimization Notice

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors 
for optimizations that are not unique to Intel microprocessors. These optimizations include 
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee 
the availability, functionality, or effectiveness of any optimization on microprocessors not 
manufactured by Intel. 

Microprocessor-dependent optimizations in this product are intended for use with Intel 
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for 
Intel microprocessors. Please refer to the applicable product User and Reference Guides for 
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804 
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