
Scale and Manage 
your Microservices in 
Production, backed by 
Commercial Support

ACTIVEGO

Microservices are fast becoming a key, strategic initiative within the enter-
prise, allowing architects to better address the challenges of scaling applica-
tions, while supporting more fl exible and agile development practices.

Simply put, microservices are small, loosely coupled, self-contained services 
that feature discrete functionality which communicate with each other over 
a network. By replacing monolithic applications or even SOA-based web ser-
vices, microservices allow the enterprise to solve business problems faster by 
iterating multiple, small, non-dependent services quicker than versioning a 
single large application.

WHY GO?
Go was developed to address the cloud computing revolution when APIs 
were dominating and continuous integration/continuous deployment (CI/
CD) was becoming commonplace. In other words, Go was built for the way 
enterprises develop applications today.

But Go’s real claim to fame is native concurrency, which means that multiple 
tasks can be executed at the same time. While you could spend time and 
resources to implement concurrency in older programming languages like 
Java and C, Go offers it out of the box. For microservices-based applications, 
which are typically distributed across multiple, multi-core/multi-CPU serv-
ers, building them in Go maximizes application scalability and performance 
while minimizing development costs.

When it comes time to deploy, Go microservices are compiled into small, dis-
crete binaries that do not depend on local interpreters or JVMs to run. In a 
fast-paced CI/CD world, where minimizing deployment overhead is critical 
to helping enterprises keep up with the pace of business change, Go micro-
services shine.

FOR MICROSERVICES

SERVICE DISCOVERY 
Supports Consul for service 
registration and discovery

DISTRIBUTED TRACING
Supports OpenTracing for 
debugging inter-service 

communications

CACHING 
Support for local in-memory 

caching & distributed caching

USE LESS RESOURCES
Compiles to a small binary – no 
JVM/local interpreter required

NATIVE CONCURRENCY
Maximum performance on 

multi-core CPUs

REDUCE RISK
Security scanned; license 

reviewed & backed by SLA

COMPATIBILITY
100% compatible with 

community open source Go

ACTIVEGO
FOR MICROSERVICES



website: www.activestate.com
Toll-free in NA: 1.866.631.4581
email: solutions@activestate.com

© 2018 ActiveState Software Inc. All rights reserved. ActiveState®, ActivePerl®, ActiveTcl®, 
ActivePython®, Komodo®, ActiveGo™, ActiveRuby™, ActiveNode™, ActiveLua™ and 
The Open Source Languages Company™ are all trademarks of ActiveState.

Like all Go initiatives, building a microservice starts by de-
fining a set of imported packages you want to leverage in 
your service. Figure 1 lists a set of commonly used Go com-
munity packages (as well as native tools) that you might 
want to consider to simplify the building of your service.

Communication between services needs to be fast and re-
liable, which is why Go includes a built-in net/http library; 
appropriate for REST-based endpoints that serve dynamic 
content. Endpoints that serve static content can benefit 
from libraries like fasthttp, which offer in-memory caching 
for smaller jobs, but there’s always gomemcached for lar-
ger caching jobs.

Self-contained microservices typically include their own 
data layer. Go provides support for multiple relational 
(MySQL; Oracle, etc.) and non-relational databases (Cas-
sandra, Mongodb, etc.), with streaming data support pro-
vided by sarama, a client library for Apache’s Kafka.

Logging and error tracing are important for any applica-
tion, but doubly so for applications that rely on distrib-

ACTIVEGO
FOR MICROSERVICES

uted services. Consider using the included logrus for per 
service logging. To visualize the journey that transactions 
take across your networked services Go provides support 
for the OpenTracing project (distributed tracing) as well as 
zipkin (visualization).

Finally, many enterprises are choosing to deploy their Go 
microservices on public and private cloud infrastructures 
using Docker containers managed by Docker Swarm 
or Kubernetes for ease of orchestration, scaling and 
management.

While open source Go provides all of the tools and libraries 
discussed here, high-value staff can end up wasting days 
on the low-value work of installing and configuring pack-
ages before they are able to start writing code. ActiveGo 
not only comes pre-compiled with the most popular open 
source packages, but is also pre-optimized for compatibil-
ity and speed, ensuring microservices development teams 
can be productive right out of the box so you can get your 
microservices-based applications into production faster.

BUILD TEST DEPLOY
• go-kit (zookeeper & 

consul pub/sub)
• go-micro (RPC framework)
• Gorilla (Websockets 

& mux support)
• Gomemcached 

(distributed caching)
• Easyjson (JSON marshalling)
• oauth2 (authentication)

• OpenTracing 
(distributed tracing)
• Delve (debugging)
• assert (testing tools)
• logrus (structured logging)
• Golint (linter for code quality)
• h2i (HTTP/2 debugger)
• ginkgo (BBD-style 

testing framework)

• aws-sdk-go (AWS support)
• apigateway (for requests 

to AWS API Gateway)
• applicationautoscaling 

(autoscale on AWS)
• appengine (Google 

Cloud support)
• aebundler (tarball your app)
• consul (pub/sub for Consul)

Figure 1: Some of Go’s included libraries and third-party packages


